Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Methods Cell Biol ; 185: 99-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556454

RESUMO

Radiotherapy is a crucial treatment modality for cancer patients, with approximately 60% of individuals undergoing ionizing radiation as part of their disease management. In recent years, there has been a growing trend toward minimizing irradiation fields through the use of image-guided dosimetry and innovative technologies. These advancements allow for selective irradiation, delivering higher local doses while reducing the number of treatment sessions. Consequently, computer-assisted methods have significantly enhanced the effectiveness of radiotherapy in the curative and palliative treatment of various cancers. Although radiation therapy alone can effectively achieve local control in some cancer types, it may not be sufficient for others. As a result, further preclinical research is necessary to explore novel approaches including new schedules of radiotherapy treatments. Unfortunately, there is a concerning lack of correlation between clinical outcomes and experiments conducted on mouse models. We hypothesize that this disparity arises from the differences in irradiation strategies employed in preclinical studies compared to those used in clinical practice, which ultimately affects the translatability of findings to patients. In this study, we present two comprehensive radiotherapy protocols for the treatment of orthotopic melanoma and glioblastoma tumors. These protocols utilize a small animal radiation research platform, which is an ideal radiation device for delivering localized and precise X-ray doses to the tumor mass. By employing these platforms, we aim to limit the side effects associated with irradiating healthy surrounding tissues. Our detailed protocols offer a valuable framework for conducting preclinical studies that closely mimic clinical radiotherapy techniques, bridging the gap between experimental results and patient outcomes.


Assuntos
Glioblastoma , Radioterapia Guiada por Imagem , Camundongos , Humanos , Animais , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Glioblastoma/patologia , Glioblastoma/radioterapia , Modelos Animais de Doenças
2.
Clin Cancer Res ; 30(18): 4131-4142, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38630754

RESUMO

PURPOSE: Patients with cancer frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NET), we have investigated the mechanisms, consequences, and occurrence of such phenomena in patients undergoing radiotherapy. EXPERIMENTAL DESIGN: NETosis was analyzed in cultures of neutrophils isolated from healthy donors, patients with cancer, and cancer-bearing mice under confocal microscopy. Cocultures of radiation-induced NETs, immune effector lymphocytes, and tumor cells were used to study the effects of irradiation-induced NETs on immune cytotoxicity. Radiation-induced NETs were intravenously injected to mice for assessing their effects on metastasis. Circulating NETs in irradiated patients with cancer were measured using ELISA methods for detecting MPO-DNA complexes and citrullinated histone 3. RESULTS: Irradiation of neutrophils with very low γ-radiation doses (0.5-1 Gy) elicits NET formation in a manner dependent on oxidative stress, NADPH oxidase activity, and autocrine IL8. Radiation-induced NETs interfere with NK cell and T-cell cytotoxicity. As a consequence, preinjection of irradiation-induced NETs increases the number of successful metastases in mouse tumor models. Increases in circulating NETs were readily detected in two prospective series of patients following the first fraction of their radiotherapy courses. CONCLUSIONS: NETosis is induced by low-dose ionizing irradiation in a neutrophil-intrinsic fashion, and radiation-induced NETs are able to interfere with immune-mediated cytotoxicity. Radiation-induced NETs foster metastasis in mouse models and can be detected in the circulation of patients undergoing conventional radiotherapy treatments. See related commentary by Mowery and Luke, p. 3965.


Assuntos
Armadilhas Extracelulares , Raios gama , Neoplasias , Neutrófilos , Armadilhas Extracelulares/efeitos da radiação , Armadilhas Extracelulares/metabolismo , Humanos , Animais , Camundongos , Neutrófilos/efeitos da radiação , Neutrófilos/imunologia , Raios gama/efeitos adversos , Neoplasias/radioterapia , Neoplasias/patologia , Radiação Ionizante , Estresse Oxidativo/efeitos da radiação , Linhagem Celular Tumoral , Feminino , Interleucina-8/metabolismo , Masculino
3.
Methods Cell Biol ; 180: 81-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37890934

RESUMO

Radiotherapy (RT) can work together with the immune system to eliminate cancer. It can cause immunogenic cell death and facilitate tumor neoantigen presentation and thereby the cross-priming of tumor-specific T-lymphocytes, turning irradiated tumors into in-situ vaccines. Accumulating preclinical and clinical evidence indicates that RT in conjunction with ICB leads to systemic anti-tumor immune responses, thus stimulating interest in using ICB to overcome primary and acquired cancer resistance to radiotherapy. However, the systemic effects (abscopal effects) obtained to date are far from being acceptable for clinical translation. In this context, multiple preclinical mouse models have demonstrated that a variety of immunotherapy agents can be delivered locally to enhance antitumor immunity both in a local and systemic fashion. Using two slightly asynchronous and anatomically distant subcutaneous B16OVA tumors in syngeneic immunocompetent hosts (C57BL/6), we describe the feasibility of a local immunotherapy treatment given in combination with external beam irradiation, which exerts immune-mediated antitumor effects in mice and humans upon intratumoral delivery. With minor variations, the same technique can be easily applied to a variety of mouse transplantable tumors.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/radioterapia , Neoplasias/patologia , Imunoterapia/métodos , Linfócitos T
4.
Methods Cell Biol ; 174: 127-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710046

RESUMO

The clonogenic assay is an in vitro method based on the ability of a single cell to proliferate indefinitely into a colony. This assay is the gold standard method to analyze cell viability and quantify reproductive cell survival fraction after treatment with ionizing radiation and other cytotoxic agents in vitro. After the cytotoxic effect, only some cells retain their ability to grow from one cell and form colonies. The colony is defined to consist of at least 50 cells. The radiosensitivity of each cell line may vary. Thus, characterizing cell sensitivity following radiation is crucial to choose the optimum radiotherapy dose. Here, we describe a method to test the in vitro capability of cell lines to form colonies following radiation treatment. This assay allows to analyze the efficacy of specific treatments on the cell reproductivity of cell lines With some adaptations, this protocol can be essentially applied to analyze the cell proliferation rate after different doses of irradiation on many different cell lines.


Assuntos
Neoplasias , Tolerância a Radiação , Linhagem Celular , Sobrevivência Celular , Técnicas In Vitro
5.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631161

RESUMO

BACKGROUND: Radioimmunotherapy combines irradiation of tumor lesions with immunotherapy to achieve local and abscopal control of cancer. Most immunotherapy agents are given systemically, but strategies for delivering immunotherapy locally are under clinical scrutiny to maximize efficacy and avoid toxicity. Local immunotherapy, by injecting various pathogen-associated molecular patterns, has shown efficacy both preclinically and clinically. BO-112 is a viral mimetic based on nanoplexed double-stranded RNA (poly I:C) which exerts immune-mediated antitumor effects in mice and humans on intratumoral delivery. BO-112 and focal irradiation were used to make the proof-of-concept for local immunotherapy plus radiation therapy combinations. METHODS: Murine transplantable tumor cell lines (TS/A, MC38 and B16-OVA) were used to show increased immunogenic features under irradiation, as well as in bilateral tumor models in which only one of the lesions was irradiated or/and injected with BO-112. Flow cytometry and multiplex tissue immunofluorescence were used to determine the effects on antitumor immunity. Depletions of immune cell populations and knockout mice for the IFNAR and BATF-3 genes were used to delineate the immune system requirements for efficacy. RESULTS: In cultures of TS/A breast cancer cells, the combination of irradiation and BO-112 showed more prominent features of immunogenic tumor cell death in terms of calreticulin exposure. Injection of BO-112 into the tumor lesion receiving radiation achieved excellent control of the treated tumor and modest delays in contralateral tumor progression. Local effects were associated with more prominent infiltrates of antitumor cytotoxic tumor lymphocytes (CTLs). Importantly, local irradiation plus BO-112 in one of the tumor lesions that enhanced the therapeutic effects of radiotherapy on distant irradiated lesions that were not injected with BO-112. Hence, this beneficial effect of local irradiation plus BO-112 on a tumor lesion enhanced the therapeutic response to radiotherapy on distant non-injected lesions. CONCLUSION: This study demonstrates that local BO-112 immunotherapy and focal irradiation may act in synergy to achieve local tumor control. Irradiation plus BO-112 in one of the tumor lesions enhanced the therapeutic effects on distant irradiated lesions that were not injected with BO-112, suggesting strategies to treat oligometastatic patients with lesions susceptible to radiotherapy and with at least one tumor accessible for repeated BO-112 intratumoral injections.


Assuntos
Linfócitos T CD8-Positivos , Poli I-C , Radioimunoterapia , Animais , Camundongos , Adjuvantes Imunológicos/metabolismo , Imunoterapia , Poli I-C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA