Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Hered ; 115(3): 241-252, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38567866

RESUMO

Although spiders are one of the most diverse groups of arthropods, the genetic architecture of their evolutionary adaptations is largely unknown. Specifically, ancient genome-wide duplication occurring during arachnid evolution ~450 mya resulted in a vast assembly of gene families, yet the extent to which selection has shaped this variation is understudied. To aid in comparative genome sequence analyses, we provide a chromosome-level genome of the Western black widow spider (Latrodectus hesperus)-a focus due to its silk properties, venom applications, and as a model for urban adaptation. We used long-read and Hi-C sequencing data, combined with transcriptomes, to assemble 14 chromosomes in a 1.46 Gb genome, with 38,393 genes annotated, and a BUSCO score of 95.3%. Our analyses identified high repetitive gene content and heterozygosity, consistent with other spider genomes, which has led to challenges in genome characterization. Our comparative evolutionary analyses of eight genomes available for species within the Araneoidea group (orb weavers and their descendants) identified 1,827 single-copy orthologs. Of these, 155 exhibit significant positive selection primarily associated with developmental genes, and with traits linked to sensory perception. These results support the hypothesis that several traits unique to spiders emerged from the adaptive evolution of ohnologs-or retained ancestrally duplicated genes-from ancient genome-wide duplication. These comparative spider genome analyses can serve as a model to understand how positive selection continually shapes ancestral duplications in generating novel traits today within and between diverse taxonomic groups.


Assuntos
Viúva Negra , Evolução Molecular , Duplicação Gênica , Genoma , Animais , Viúva Negra/genética , Cromossomos/genética , Filogenia , Transcriptoma , Aranhas/genética , Evolução Biológica , Anotação de Sequência Molecular , Seleção Genética
2.
BMC Evol Biol ; 20(1): 104, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811423

RESUMO

BACKGROUND: Microbiomes can have profound impacts on host biology and evolution, but to date, remain vastly understudied in spiders despite their unique and diverse predatory adaptations. This study evaluates closely related species of spiders and their host-microbe relationships in the context of phylosymbiosis, an eco-evolutionary pattern where the microbial community profile parallels the phylogeny of closely related host species. Using 16S rRNA gene amplicon sequencing, we characterized the microbiomes of five species with known phylogenetic relationships from the family Theridiidae, including multiple closely related widow spiders (L. hesperus, L. mactans, L. geometricus, S. grossa, and P. tepidariorum). RESULTS: We compared whole animal and tissue-specific microbiomes (cephalothorax, fat bodies, venom glands, silk glands, and ovary) in the five species to better understand the relationship between spiders and their microbial symbionts. This showed a strong congruence of the microbiome beta-diversity of the whole spiders, cephalothorax, venom glands, and silk glands when compared to their host phylogeny. Our results support phylosymbiosis in these species and across their specialized tissues. The ovary tissue microbial dendrograms also parallel the widow phylogeny, suggesting vertical transfer of species-specific bacterial symbionts. By cross-validating with RNA sequencing data obtained from the venom glands, silk glands and ovaries of L. hesperus, L. geometricus, S. grossa, and P. tepidariorum we confirmed that several microbial symbionts of interest are viably active in the host. CONCLUSION: Together these results provide evidence that supports the importance of host-microbe interactions and the significant role microbial communities may play in the evolution and adaptation of their hosts.


Assuntos
Evolução Biológica , Microbiota , Aranhas/classificação , Aranhas/microbiologia , Simbiose , Animais , Feminino , Filogenia , RNA Ribossômico 16S/genética
3.
Arch Biochem Biophys ; 689: 108435, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485153

RESUMO

Actinoporins are a family of pore-forming toxins produced by sea anemones as part of their venomous cocktail. These proteins remain soluble and stably folded in aqueous solution, but when interacting with sphingomyelin-containing lipid membranes, they become integral oligomeric membrane structures that form a pore permeable to cations, which leads to cell death by osmotic shock. Actinoporins appear as multigenic families within the genome of sea anemones: several genes encoding very similar actinoporins are detected within the same species. The Caribbean Sea anemone Stichodactyla helianthus produces three actinoporins (sticholysins I, II and III; StnI, StnII and StnIII) that differ in their toxic potency. For example, StnII is about four-fold more effective than StnI against sheep erythrocytes in causing hemolysis, and both show synergy. However, StnIII, recently discovered in the S. helianthus transcriptome, has not been characterized so far. Here we describe StnIII's spectroscopic and functional properties and show its potential to interact with the other Stns. StnIII seems to maintain the well-preserved fold of all actinoporins, characterized by a high content of ß-sheet, but it is significantly less thermostable. Its functional characterization shows that the critical concentration needed to form active pores is higher than for either StnI or StnII, suggesting differences in behavior when oligomerizing on membrane surfaces. Our results show that StnIII is an interesting and unexpected piece in the puzzle of how this Caribbean Sea anemone species modulates its venomous activity.


Assuntos
Venenos de Cnidários/química , Proteínas Citotóxicas Formadoras de Poros/química , Anêmonas-do-Mar/química , Sequência de Aminoácidos , Animais , Venenos de Cnidários/metabolismo , Hemólise/efeitos dos fármacos , Modelos Moleculares , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Anêmonas-do-Mar/metabolismo , Alinhamento de Sequência , Ovinos
4.
BMC Evol Biol ; 17(1): 78, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288560

RESUMO

BACKGROUND: Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. RESULTS: We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of ß-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. CONCLUSIONS: MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored properties.


Assuntos
Evolução Molecular , Seda/genética , Aranhas/genética , Substituição de Aminoácidos , Animais , Fibroínas/genética , Duplicação Gênica , Filogenia , Aranhas/classificação
5.
BMC Genomics ; 18(1): 178, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209133

RESUMO

BACKGROUND: Black widow spiders are infamous for their neurotoxic venom, which can cause extreme and long-lasting pain. This unusual venom is dominated by latrotoxins and latrodectins, two protein families virtually unknown outside of the black widow genus Latrodectus, that are difficult to study given the paucity of spider genomes. Using tissue-, sex- and stage-specific expression data, we analyzed the recently sequenced genome of the house spider (Parasteatoda tepidariorum), a close relative of black widows, to investigate latrotoxin and latrodectin diversity, expression and evolution. RESULTS: We discovered at least 47 latrotoxin genes in the house spider genome, many of which are tandem-arrayed. Latrotoxins vary extensively in predicted structural domains and expression, implying their significant functional diversification. Phylogenetic analyses show latrotoxins have substantially duplicated after the Latrodectus/Parasteatoda split and that they are also related to proteins found in endosymbiotic bacteria. Latrodectin genes are less numerous than latrotoxins, but analyses show their recruitment for venom function from neuropeptide hormone genes following duplication, inversion and domain truncation. While latrodectins and other peptides are highly expressed in house spider and black widow venom glands, latrotoxins account for a far smaller percentage of house spider venom gland expression. CONCLUSIONS: The house spider genome sequence provides novel insights into the evolution of venom toxins once considered unique to black widows. Our results greatly expand the size of the latrotoxin gene family, reinforce its narrow phylogenetic distribution, and provide additional evidence for the lateral transfer of latrotoxins between spiders and bacterial endosymbionts. Moreover, we strengthen the evidence for the evolution of latrodectin venom genes from the ecdysozoan Ion Transport Peptide (ITP)/Crustacean Hyperglycemic Hormone (CHH) neuropeptide superfamily. The lower expression of latrotoxins in house spiders relative to black widows, along with the absence of a vertebrate-targeting α-latrotoxin gene in the house spider genome, may account for the extreme potency of black widow venom.


Assuntos
Viúva Negra , Evolução Molecular , Perfilação da Expressão Gênica , Variação Genética , Genômica , Proteínas de Insetos/toxicidade , Venenos de Aranha/genética , Animais , Coxiellaceae/fisiologia , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Domínios Proteicos , Caracteres Sexuais , Simbiose
6.
J Proteome Res ; 13(2): 817-35, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24303891

RESUMO

Spiders from the family Scytodidae have a unique prey capturing technique: they spit a zig-zagged silken glue to tether prey to a surface. Effectiveness of this sticky mixture is based on a combination of contraction and adhesion, trapping prey until the spider immobilizes it by envenomation and then feeds. We identify components expressed in Scytodes thoracica venom glands using combined transcriptomic and proteomic analyses. These include homologues of toxic proteins astacin metalloproteases and potentially toxic proteins including venom allergen, longistatin, and translationally controlled tumor protein (TCTP). We classify 19 distinct groups of candidate peptide toxins; 13 of these were detected in the venom, making up 35% of the proteome. Six have significant similarity to toxins from spider species spanning mygalomorph and nonhaplogyne araneomorph lineages, suggesting their expression in venom is phylogenetically widespread. Twelve peptide toxin groups have homologues in venom gland transcriptomes of other haplogynes. Of the transcripts, approximately 50% encode glycine-rich peptides that may contribute to sticky fibers in Scytodes spit. Fifty-one percent of the identified venom proteome is a family of proteins that is homologous to sequences from Drosophila sp. and Latrodectus hesperus with uncharacterized function. Characterization of these components holds promise for discovering new functional activity.


Assuntos
Saliva/metabolismo , Venenos de Aranha/metabolismo , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Filogenia , Comportamento Predatório , Homologia de Sequência de Aminoácidos , Venenos de Aranha/classificação , Aranhas
7.
BMC Genomics ; 15: 366, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24916504

RESUMO

BACKGROUND: Animal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution. RESULTS: We estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression. CONCLUSIONS: Quantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity.


Assuntos
Proteínas de Artrópodes/análise , Viúva Negra/genética , Genômica/métodos , Espectrometria de Massas/métodos , Venenos de Aranha/química , Venenos de Aranha/genética , Animais , Viúva Negra/metabolismo , Dados de Sequência Molecular , Filogenia , Proteoma/análise , Análise de Sequência de RNA , Seda/genética , Seda/metabolismo , Venenos de Aranha/metabolismo , Transcriptoma
8.
BMC Genomics ; 15: 365, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24916340

RESUMO

BACKGROUND: Spiders (Order Araneae) are essential predators in every terrestrial ecosystem largely because they have evolved potent arsenals of silk and venom. Spider silks are high performance materials made almost entirely of proteins, and thus represent an ideal system for investigating genome level evolution of novel protein functions. However, genomic level resources remain limited for spiders. RESULTS: We de novo assembled a transcriptome for the Western black widow (Latrodectus hesperus) from deeply sequenced cDNAs of three tissue types. Our multi-tissue assembly contained ~100,000 unique transcripts, of which > 27,000 were annotated by homology. Comparing transcript abundance among the different tissues, we identified 647 silk gland-specific transcripts, including the few known silk fiber components (e.g. six spider fibroins, spidroins). Silk gland specific transcripts are enriched compared to the entire transcriptome in several functions, including protein degradation, inhibition of protein degradation, and oxidation-reduction. Phylogenetic analyses of 37 gene families containing silk gland specific transcripts demonstrated novel gene expansions within silk glands, and multiple co-options of silk specific expression from paralogs expressed in other tissues. CONCLUSIONS: We propose a transcriptional program for the silk glands that involves regulating gland specific synthesis of silk fiber and glue components followed by protecting and processing these components into functional fibers and glues. Our black widow silk gland gene repertoire provides extensive expansion of resources for biomimetic applications of silk in industry and medicine. Furthermore, our multi-tissue transcriptome facilitates evolutionary analysis of arachnid genomes and adaptive protein systems.


Assuntos
Viúva Negra/genética , Seda/genética , Análise Serial de Tecidos/métodos , Animais , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Especificidade de Órgãos , Filogenia , Análise de Sequência de DNA , Seda/metabolismo
9.
Mol Biol Evol ; 30(5): 999-1014, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23339183

RESUMO

Black widow spiders (members of the genus Latrodectus) are widely feared because of their potent neurotoxic venom. α-Latrotoxin is the vertebrate-specific toxin responsible for the dramatic effects of black widow envenomation. The evolution of this toxin is enigmatic because only two α-latrotoxin sequences are known. In this study, ~4 kb α-latrotoxin sequences and their homologs were characterized from a diversity of Latrodectus species, and representatives of Steatoda and Parasteatoda, establishing the wide distribution of latrotoxins across the mega-diverse spider family Theridiidae. Across black widow species, α-latrotoxin shows ≥ 94% nucleotide identity and variability consistent with purifying selection. Multiple codon and branch-specific estimates of the nonsynonymous/synonymous substitution rate ratio also suggest a long history of purifying selection has acted on α-latrotoxin across Latrodectus and Steatoda. However, α-latrotoxin is highly divergent in amino acid sequence between these genera, with 68.7% of protein differences involving non-conservative substitutions, evidence for positive selection on its physiochemical properties and particular codons, and an elevated rate of nonsynonymous substitutions along α-latrotoxin's Latrodectus branch. Such variation likely explains the efficacy of red-back spider, L. hasselti, antivenom in treating bites from other Latrodectus species, and the weaker neurotoxic symptoms associated with Steatoda and Parasteatoda bites. Long-term purifying selection on α-latrotoxin indicates its functional importance in black widow venom, even though vertebrates are a small fraction of their diet. The greater differences between Latrodectus and Steatoda α-latrotoxin, and their relationships to invertebrate-specific latrotoxins, suggest a shift in α-latrotoxin toward increased vertebrate toxicity coincident with the evolution of widow spiders.


Assuntos
Evolução Molecular , Neurotoxinas/química , Neurotoxinas/metabolismo , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Animais , Modelos Teóricos , Neurotoxinas/classificação , Neurotoxinas/genética , Venenos de Aranha/classificação , Venenos de Aranha/genética
10.
Mol Biol Evol ; 30(3): 589-601, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23155003

RESUMO

Spider silk fibers have impressive mechanical properties and are primarily composed of highly repetitive structural proteins (termed spidroins) encoded by a single gene family. Most characterized spidroin genes are incompletely known because of their extreme size (typically >9 kb) and repetitiveness, limiting understanding of the evolutionary processes that gave rise to their unusual gene architectures. The only complete spidroin genes characterized thus far form the dragline in the Western black widow, Latrodectus hesperus. Here, we describe the first complete gene sequence encoding the aciniform spidroin AcSp1, the primary component of spider prey-wrapping fibers. L. hesperus AcSp1 contains a single enormous (∼19 kb) exon. The AcSp1 repeat sequence is exceptionally conserved between two widow species (∼94% identity) and between widows and distantly related orb-weavers (∼30% identity), consistent with a history of strong purifying selection on its amino acid sequence. Furthermore, the 16 repeats (each 371-375 amino acids long) found in black widow AcSp1 are, on average, >99% identical at the nucleotide level. A combination of stabilizing selection on amino acid sequence, selection on silent sites, and intragenic recombination likely explains the extreme homogenization of AcSp1 repeats. In addition, phylogenetic analyses of spidroin paralogs support a gene duplication event occurring concomitantly with specialization of the aciniform glands and the tubuliform glands, which synthesize egg-case silk. With repeats that are dramatically different in length and amino acid composition from dragline spidroins, our L. hesperus AcSp1 expands the knowledge base for developing silk-based biomimetic technologies.


Assuntos
Viúva Negra/genética , Fibroínas/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Sequências Repetitivas de Aminoácidos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA