Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 890: 164281, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37216984

RESUMO

Wildfire regimes affected by global change have been the cause of major concern in recent years. Both direct prevention (e.g., fuel management planning) and land governance strategies (e.g., agroforestry development) can have an indirect regulatory effect on wildfires. Herein, we tested the hypothesis that active land planning and management in Italy have mitigated wildfire impacts in terms of loss of ecosystem services and forest cover, and burned wildland-urban interface, from 2007 to 2017. At the national scale, we assessed the effect size of major potential fire drivers such as climate, weather, flammability, socio-economic descriptors, land use changes, and proxies for land governance (e.g., European funds for rural development, investments in sustainable forest management, agro-pastoral activities), including potential interactions, on fire-related impacts via Random Forest modelling and Generalized Additive Mixed Model. Agro-forest districts (i.e., aggregations of neighbouring municipalities with homogeneous forest and agricultural characteristics) were used as spatial units of analysis. Our results confirm that territories with more active land governance show lower wildfire impacts, even under severe flammability and climatic conditions. This study supports current regional, national, and European strategies towards "fire resistant and resilient landscapes" by fostering agro-forestry, rural development, and nature conservation integrated policies.


Assuntos
Incêndios Florestais , Ecossistema , Itália , Tempo (Meteorologia) , Cidades
2.
Ambio ; 51(12): 2496-2507, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35680704

RESUMO

Land-use legacy on forest dynamics at both stand and landscape scale can last for centuries, affecting forest structure and species composition. We aimed to disentangle the history of the charcoal production legacies that historically shaped Mont Avic Natural Park (Aosta Valley, Italy) forests by integrating LiDAR, GIS, anthracological, and field data at the landscape scale. We adopted different geostatistical tools to relate geographic layers from various data sources. The overexploitation due to intensive charcoal production to fuel mining activities shaped the current forests by homogenising their structure and species composition into dense and young stands with a reduction in late seral species such as Norway spruce (Picea abies) and an increase in pioneer species such as Mountain pine (Pinus uncinata). The multidisciplinary and multi-scale framework adopted in this study stresses the role of historical landscape ecology in evaluating ecosystem resilience to past anthropogenic disturbances.


Assuntos
Picea , Pinus , Ecossistema , Carvão Vegetal , Madeira , Florestas
3.
Sci Data ; 8(1): 220, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404811

RESUMO

Primary forests, defined here as forests where the signs of human impacts, if any, are strongly blurred due to decades without forest management, are scarce in Europe and continue to disappear. Despite these losses, we know little about where these forests occur. Here, we present a comprehensive geodatabase and map of Europe's known primary forests. Our geodatabase harmonizes 48 different, mostly field-based datasets of primary forests, and contains 18,411 individual patches (41.1 Mha) spread across 33 countries. When available, we provide information on each patch (name, location, naturalness, extent and dominant tree species) and the surrounding landscape (biogeographical regions, protection status, potential natural vegetation, current forest extent). Using Landsat satellite-image time series (1985-2018) we checked each patch for possible disturbance events since primary forests were identified, resulting in 94% of patches free of significant disturbances in the last 30 years. Although knowledge gaps remain, ours is the most comprehensive dataset on primary forests in Europe, and will be useful for ecological studies, and conservation planning to safeguard these unique forests.


Assuntos
Conservação dos Recursos Naturais , Florestas , Bases de Dados Factuais , Europa (Continente)
4.
Sci Rep ; 10(1): 9801, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555207

RESUMO

Bois noir (BN) is the most important phytoplasma disease of Euro-Mediterranean area and induces severe loss of production and even the death of vines. Understanding the delicate balance between disease progression and recovery of BN infected plants over space and time is crucial to set up management tools. The data collected and analysed allowed to provide insights into dispersal pattern of the disease, caused by'Candidatus Phytoplasma solani'. Point pattern analysis (PPA) was applied to assess the spatial arrangement of symptomatic plants and the spatial correlation of disease levels in four vineyards. For spatio-temporal patterns of BN, a mark-correlation function was applied. Space-time PPA over multiple years (2011-2015) provided graphical visualisation of grapevines more severely affected by BN along the borders of the vineyards, mainly in 2011 when disease incidence was high. PPA across the symptomatic plants in the four vineyards confirmed this visual trend: an overall aggregated pattern at small (<10 m) spatial scales (2013) that were more evident later at all spatial scales (0-15 m). Application of this innovative spatial approach based on point and surface pattern analyses allowed the spread and severity of BN to be monitored, to define the dispersal routes of the pathogen. Such data will contribute to better understand the distribution of symptomatic plants over space and time and to define a model for preventive strategies to reduce future infections.


Assuntos
Phytoplasma , Doenças das Plantas/microbiologia , Vitis/microbiologia , Agricultura
5.
Sci Total Environ ; 728: 139006, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361584

RESUMO

Chilean territory is recurrently affected by severe wildfires, which drastically reduce the forest cover and promote runoff, soil erosion and slope instabilities. To understand how the geomorphic system responds to wildfires in terms of sediment dynamics, the assessment of sediment connectivity, i.e. the property describing the relationships between compartments of a geomorphic system, is crucial. This study aims to quantify the spatial linkages between fire severity and sediment connectivity to identify common patterns and driving factors. The compound use of field data and open-source satellite imagery helped to apply the Relative differenced Normalized Burn Ratio (RdNBR) and the Index of Connectivity (IC) in the context of two consecutive wildfires, occurred in 2002 and 2015, in the Rio Toro catchment (Chile). The fire severity assessment showed that the 2002 event affected 90% of the catchment, with high severity areas representing around 70%. The 2015 wildfire instead, affected 76% of the catchment with moderate severity around 42%. Accordingly, as result of the sudden reduction in forest cover in severely affected areas, the IC changed after both wildfires with an overall increase of 1.07 and 0.54, respectively. However, only for the second disturbance, it was possible to observe a clear relationship between the RdNBR and the IC variations. The different degree of vegetation cover heterogeneity between the two pre-wildfire scenarios contributed to different fire severity and IC variability between the two disturbances. The use of open-source satellite data and the development of a weighting factor (W), to be used in IC and able to capture the land cover change driven by the wildfires, could make the application of this approach straightforward, promoting its reproducibility in other catchments for land management and risk mitigation purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA