Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 182(2): 857-869, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31719153

RESUMO

The phenylpropanoid pathway of flavonoid biosynthesis has been the subject of considerable research attention. By contrast, the proposed polyketide pathway, also known as the acetate pathway, which provides malonyl-CoA moieties for the C2 elongation reaction catalyzed by chalcone synthase, is less well studied. Here, we identified four genes as candidates for involvement in the supply of cytosolic malonyl-CoA from the catabolism of acyl-CoA, based on coexpression analysis with other flavonoid-related genes. Two of these genes, ACC and KAT5, have been previously characterized with respect to their involvement in lipid metabolism, but no information concerning their relationship to flavonoid biosynthesis is available. To assess the occurrence and importance of the acetate pathway, we characterized the metabolomes of two mutant or transgenic Arabidopsis lines for each of the four enzymes of this putative pathway using a hierarchical approach covering primary and secondary metabolites as well as lipids. Intriguingly, not only flavonoid content but also glucosinolate content was altered in lines deficient in the acetate pathway, as were levels of lipids and most primary metabolites. We discuss these data in the context of our current understanding of flavonoids and lipid metabolism as well as with regard to improving human nutrition.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Arabidopsis/metabolismo , Flavonoides/biossíntese , Metabolismo dos Lipídeos/genética , Lipídeos/biossíntese , Lisina Acetiltransferase 5/metabolismo , Acetil-CoA Carboxilase/genética , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Arabidopsis/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Glucosinolatos/metabolismo , Lisina Acetiltransferase 5/genética , Malonil Coenzima A/metabolismo , Metaboloma , Mutação , Plantas Geneticamente Modificadas , Policetídeos/metabolismo , Transcriptoma
2.
Physiol Plant ; 172(4): 2022-2033, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33860540

RESUMO

At the reproductive stage, lily plants bear two morphological types of mature leaves, one at the lower and one at the upper part of the stem. At the vegetative stage, all the leaves are similar to each other and to the reproductive plant's lower leaves. This heterophylly has not yet been explored. In this study, we show that it is not a result of the plant's age but rather an outcome of floral induction. The induction appears as an on-going process, during which the meristem still produces leaves but progressively becomes committed to reproduction. This intermediate period lasts until the ultimate switch to flower primordia occurs. The leaves produced during floral induction, termed here as "inductive," appear at the upper part of the stem. Besides their typical higher stomata density, these leaves have a poly-layered palisade mesophyll, whose cells exhibit a unique morphology and contain more chlorophyll than leaves of vegetative plants. These leaves display higher carbon assimilation, soluble sugar production, and chloroplast-lipid accumulation. Accordingly, genes associated with stomata, chloroplast, and photosynthesis are upregulated in these leaves. Our results were obtained when floral induction was achieved either by vernalization or photoperiod signals, ruling out a mere environmental effect. We suggest that lily plants prepare themselves for the high-energy-demanding bloom by producing leaves with enhanced photosynthetic capacity, leading to an increase in soluble sugars. These novel findings introduce an adjacent affinity between photosynthesis and flowering and provide a nondestructive tool for identifying the plant's developmental stage-vegetative or reproductive.


Assuntos
Lilium , Meristema , Flores , Folhas de Planta , Reprodução
3.
Redox Biol ; 75: 103211, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38908072

RESUMO

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

4.
Nat Cancer ; 3(4): 471-485, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35484422

RESUMO

Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors.


Assuntos
Ferroptose , Neuroblastoma , Morte Celular , Criança , Cisteína/uso terapêutico , Ferroptose/genética , Glutationa/uso terapêutico , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética
5.
Mol Plant ; 11(9): 1147-1165, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-29960108

RESUMO

To gain insight into the genetic regulation of lipid metabolism in tomato, we conducted metabolic trait loci (mQTL) analysis following the lipidomic profiling of fruit pericarp and leaf tissue of the Solanum pennellii introgression lines (IL). To enhance mapping resolution for selected fruit-specific mQTL, we profiled the lipids in a subset of independently derived S. pennellii backcross inbred lines, as well as in a near-isogenic sub-IL population. We identified a putative lecithin:cholesterol acyltransferase that controls the levels of several lipids, and two members of the class III lipase family, LIP1 and LIP2, that were associated with decreased levels of diacylglycerols (DAGs) and triacylglycerols (TAGs). Lipases of this class cleave fatty acids from the glycerol backbone of acylglycerols. The released fatty acids serve as precursors of flavor volatiles. We show that LIP1 expression correlates with fatty acid-derived volatile levels. We further confirm the function of LIP1 in TAG and DAG breakdown and volatile synthesis using transgenic plants. Taken together, our study extensively characterized the genetic architecture of lipophilic compounds in tomato and demonstrated at molecular level that release of free fatty acids from the glycerol backbone can have a major impact on downstream volatile synthesis.


Assuntos
Ácidos Graxos/metabolismo , Genes de Plantas , Locos de Características Quantitativas/genética , Solanum/genética , Solanum/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Mapeamento Cromossômico , Diglicerídeos/metabolismo , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Hibridização Genética , Metabolismo dos Lipídeos/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA