Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(43): e202200948, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638136

RESUMO

The pressure-induced switch of the long axis of MnF6 3- units in the monoclinic Na3 MnF6 compound and Mn3+ -doped Na3 FeF6 is explored with the help of first principles calculations. Although the switch phenomenon is usually related to the Jahn-Teller effect, we show that, due to symmetry reasons, it cannot take place in 3dn (n=4, 9) systems displaying a static Jahn-Teller effect. By contrast, we prove that in Na3 MnF6 the switch arises from the anisotropic response of the low symmetry lattice to hydrostatic pressure. Indeed, while the long axis of a MnF6 3- unit at ambient pressure corresponds to the Mn3+ -F3 - direction, close to the crystal c axis, at 2.79 GPa the c axis is reduced by 0.29 Šwhile b is unmodified. This fact is shown to force a change of the HOMO wavefunction favoring that the long axis becomes the Mn3+ -F2 - direction, not far from crystal b axis, after the subsequent relaxation process. The origin of the different d-d transitions observed for Na3 MnF6 and CrF2 at ambient pressure is also discussed together with changes induced by pressure in Na3 MnF6 . The present work opens a window for understanding the pressure effects upon low symmetry insulating compounds containing d4 or d9 ions.

2.
Phys Chem Chem Phys ; 16(30): 16246-54, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24972146

RESUMO

In the search for sustainable energy sources, dye sensitized solar cells (DSSCs) represent an attractive solution due to their low cost, relatively high efficiencies, and flexible design. Porphyrin-based dyes are characterized by strong absorption in the visible part of the spectrum and easy customization allowing their electronic properties to be controlled by structural variations. Here we present a computational screening study of more than 5000 porphyrin-based dyes obtained by modifying the porphyrin backbone (metal center and axial ligands), substituting hydrogen by fluorine, and adding different side and anchoring groups. Based on the calculated frontier orbital energies and optical gaps we quantify the energy level alignment with the TiO2 conduction band and different redox mediators. An analysis of the energy level-structure relationship reveals a significant structural diversity among the dyes with the highest level alignment quality, demonstrating the large degree of flexibility in porphyrin dye design. As a specific example of dye optimization, we show that the level alignment of the high efficiency record dye YD2-o-C8 [Yella et al., Science, 2011, 334, 629-634] can be significantly improved by modest structural variations. All the presented data have been stored in a publicly available database.

3.
Angew Chem Int Ed Engl ; 53(32): 8316-9, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24919964

RESUMO

Platinum is a prominent catalyst for a multiplicity of reactions because of its high activity and stability. As Pt nanoparticles are normally used to maximize catalyst utilization and to minimize catalyst loading, it is important to rationalize and predict catalytic activity trends in nanoparticles in simple terms, while being able to compare these trends with those of extended surfaces. The trends in the adsorption energies of small oxygen- and hydrogen-containing adsorbates on Pt nanoparticles of various sizes and on extended surfaces were analyzed through DFT calculations by making use of the generalized coordination numbers of the surface sites. This simple and predictive descriptor links the geometric arrangement of a surface to its adsorption properties. It generates linear adsorption-energy trends, captures finite-size effects, and provides more accurate descriptions than d-band centers and usual coordination numbers. Unlike electronic-structure descriptors, which require knowledge of the densities of states, it is calculated manually. Finally, it was shown that an approximate equivalence exists between generalized coordination numbers and d-band centers.

4.
Phys Chem Chem Phys ; 15(44): 19478-86, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24129651

RESUMO

An efficient dye sensitized solar cell (DSSC) is one possible solution to meet the world's rapidly increasing energy demands and associated climate challenges. This requires inexpensive and stable dyes with well-positioned frontier energy levels for maximal solar absorption, efficient charge separation, and high output voltage. Here we demonstrate an extensive computational screening of zinc porphyrins functionalized with electron donating side groups and electron accepting anchoring groups. The trends in frontier energy levels versus side groups are analyzed and a no-loss DSSC level alignment quality is estimated. Out of the initial 1029 molecules, we find around 50 candidates with level alignment qualities within 5% of the optimal limit. We show that the level alignment of five zinc porphyrin dyes which were recently used in DSSCs with high efficiencies can be further improved by simple side group substitutions. All frontier energy levels, gaps and level alignment quality values are stored in a database publicly available.


Assuntos
Corantes/química , Metaloporfirinas/química , Energia Solar , Elétrons , Teoria Quântica , Titânio/química
5.
J Phys Chem Lett ; 9(15): 4413-4419, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30016107

RESUMO

The Na-O2 system holds great potential as a low-cost, high-energy-density battery, but under normal operating conditions, the discharge is limited to sodium superoxide (NaO2), whereas the high-capacity peroxide state (Na2O2) remains elusive. Here, we apply density functional theory calculations with an improved error-correction scheme to determine equilibrium potentials and free energies as a function of temperature for the different phases of NaO2 and Na2O2, identifying NaO2 as the thermodynamically preferred discharge product up to ∼120 K, after which Na2O2 is thermodynamically preferred. We also investigate the reaction mechanisms and resulting electrochemical overpotentials on stepped surfaces of the NaO2 and Na2O2 systems, showing low overpotentials for NaO2 formation (ηdis = 0.14 V) and depletion (ηcha = 0.19 V), whereas the overpotentials for Na2O2 formation (ηdis = 0.69 V) and depletion (ηcha = 0.68 V) are found to be prohibitively high. These findings are in good agreement with experimental data on the thermodynamic properties of the Na xO2 species and provide a kinetic explanation for why NaO2 is the main discharge product in Na-O2 batteries under normal operating conditions.

6.
Chem Sci ; 8(1): 124-130, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451156

RESUMO

It is known that breaking the scaling relations between the adsorption energies of *O, *OH, and *OOH is paramount in catalyzing more efficiently the reduction of O2 in fuel cells and its evolution in electrolyzers. Taking metalloporphyrins as a case study, we evaluate here the adsorption energies of those adsorbates on the metal centers Cr, Mn, Fe, Co, Ni and Cu, using H, F, OH, NH2, CH3, and BH2 as ring ligands. We show that covalence systematically breaks scaling relations under vacuum by strengthening certain M-OOH bonds. However, covalence modifies adsorbate solvation in solution depending on the degree of covalence of the metal-adsorbate bonds. The two effects have similar magnitudes and opposite signs, such that scaling relations are restored in solution. Thus, solvation is a crucial ingredient that must be taken into account in studies aimed at breaking scaling relations in solution. Our findings suggest that the choice of metal and ligand determines the catalytic activity within the limits imposed by scaling relations, whereas the choice of an appropriate solvent can drive such activity beyond those limits.

7.
J Phys Chem Lett ; 7(1): 90-5, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26651535

RESUMO

We report the interface energetics of decacyclene trianhydride (DTA) monolayers on top of two distinct model surfaces, namely, Au(111) and Ag(111). On the latter, combined valence band photoemission and X-ray absorption measurements that access the occupied and unoccupied molecular orbitals, respectively, reveal that electron transfer from substrate to surface sets in. Density functional theory calculations confirm our experimental findings and provide an understanding not only of the photoemission and X-ray absorption spectral features of this promising organic semiconductor but also of the fingerprints associated with the interface charge transfer.

9.
Chem Sci ; 6(5): 3018-3025, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142685

RESUMO

An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron-hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.

10.
ACS Nano ; 5(1): 581-9, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21142184

RESUMO

Various phases of binary molecular assemblies of perfluorinated Cu-phthalocyanine (F16CuPc) and pentacene were examined using scanning tunneling microscopy (STM). Alloying, solid solutions, phase separation, and segregation were observed in assemblies on monolayers according to the mixture ratios. The main driving force behind such molecular blending is CH-F hydrogen bonds. Lattice matching and molecular symmetry are other factors that determine the assembly configuration. A detailed understanding of such solid-state reactions provides a guideline to the construction of multilayered binary assemblies, where intermixing between molecules takes place when multiple layers are stacked.


Assuntos
Naftacenos/química , Compostos Organometálicos/química , Microscopia de Tunelamento , Modelos Moleculares , Conformação Molecular , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA