Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Rep ; 21(2): 112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38912171

RESUMO

Late-stage cancers lack effective treatment, underscoring the need for early diagnosis to improve prognosis and decrease mortality rates. Molecular markers, such as DNA methylation, offer promise in early cancer detection. The present study compared commercial kits for analyzing DNA from cervical liquid cytology samples in cancer screening. Rapid bisulfite conversion kits using silica spin-columns and magnetic beads were assessed against standard DNA extraction and bisulfite conversion methods for profiling DNA methylation using quantitative methylation-specific PCR. ß-actin amplification indicated the suitability of small sample volumes for methylation studies using either the pellet or supernatant (cell-free DNA) parts. Comparison of Bisulfite Conversion Kit-Whole Cell (Abcam), Methylamp Bisulfite Modification (Epigentek), EpiTect Fast LyseAll Bisulfite Kit (Qiagen GmbH) and EZ DNA Methylation-Direct Kit (Zymo Research Corp.) showed no significant differences in ß-actin cycle threshold values. EZ-96 DNA Methylation-Lightning MagPrep (Zymo Research Corp.), a hybrid kit in a 96-well plate format, exhibited swift turnaround time and similar amplification efficiency. Automation with magnetic bead kits increased throughput without compromising amplification efficiency in open PCR systems. Cost analysis favored direct kits over the gold standard manual protocol. This comparison aids in selecting cost-effective DNA methylation diagnostic tests. The present study confirmed comparable kit performance in methylation-based analysis, highlighting the adequacy of cytology samples and the potential of bodily fluids as alternatives for liquid biopsy.

2.
Immun Inflamm Dis ; 10(6): e634, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35634961

RESUMO

INTRODUCTION: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic revealed a worldwide lack of effective molecular surveillance networks at local, state, and national levels, which are essential to identify, monitor, and limit viral community spread. SARS-CoV-2 variants of concern (VOCs) such as Alpha and Omicron, which show increased transmissibility and immune evasion, rapidly became dominant VOCs worldwide. Our objective was to develop an evidenced-based genomic surveillance algorithm, combining reverse transcription polymerase chain reaction (RT-PCR) and sequencing technologies to quickly identify highly contagious VOCs, before cases accumulate exponentially. METHODS: Deidentified data were obtained from 508,969 patients tested for coronavirus disease 2019 (COVID-19) with the TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) in four CLIA-certified clinical laboratories in Puerto Rico (n = 86,639) and in three CLIA-certified clinical laboratories in the United States (n = 422,330). RESULTS: TaqPath data revealed a frequency of S Gene Target Failure (SGTF) > 47% for the last week of March 2021 in both, Puerto Rico and US laboratories. The monthly frequency of SGTF in Puerto Rico steadily increased exponentially from 4% in November 2020 to 47% in March 2021. The weekly SGTF rate in US samples was high (>8%) from late December to early January and then also increased exponentially through April (48%). The exponential increase in SGFT prevalence in Puerto Rico was concurrent with a sharp increase in VOCs among all SARS-CoV-2 sequences from Puerto Rico uploaded to Global Influenza Surveillance and Response System (GISAID) (n = 461). Alpha variant frequency increased from <1% in the last week of January 2021 to 51.5% of viral sequences from Puerto Rico collected in the last week of March 2021. CONCLUSIONS: According to the proposed evidence-based algorithm, approximately 50% of all SGTF patients should be managed with VOCs self-quarantine and contact tracing protocols, while WGS confirms their lineage in genomic surveillance laboratories. Our results suggest this workflow is useful for tracking VOCs with SGTF.


Assuntos
COVID-19 , SARS-CoV-2 , Sequência de Bases , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Medicina de Precisão , SARS-CoV-2/genética , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA