Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(5): 050801, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800447

RESUMO

We study the implementation of arbitrary excitation-conserving linear transformations between two sets of N stationary bosonic modes, which are connected through a photonic quantum channel. By controlling the individual couplings between the modes and the channel, an initial N-partite quantum state in register A can be released as a multiphoton wave packet and, successively, be reabsorbed in register B. Here we prove that there exists a set of control pulses that implement this transfer with arbitrarily high fidelity and, simultaneously, realize a prespecified N×N unitary transformation between the two sets of modes. Moreover, we provide a numerical algorithm for constructing these control pulses and discuss the scaling and robustness of this protocol in terms of several illustrative examples. By being purely control-based and not relying on any adaptations of the underlying hardware, the presented scheme is extremely flexible and can find widespread applications, for example, for boson-sampling experiments, multiqubit state transfer protocols, or in continuous-variable quantum computing architectures.

2.
Phys Rev Lett ; 130(5): 050601, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800450

RESUMO

In this Letter, we provide analytical and numerical evidence that the single-layer quantum approximate optimization algorithm on universal Ising spin models produces thermal-like states. We find that these pseudo-Boltzmann states can not be efficiently simulated on classical computers according to the general state-of-the-art condition that ensures rapid mixing for Ising models. Moreover, we observe that the temperature depends on a hidden universal correlation between the energy of a state and the covariance of other energy levels and the Hamming distances of the state to those energies.

3.
Phys Rev Lett ; 126(2): 023603, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512234

RESUMO

Coherent photon-emitter interfaces offer a way to mediate efficient nonlinear photon-photon interactions, much needed for quantum information processing. Here we experimentally study the case of a two-level emitter, a quantum dot, coupled to a single optical mode in a nanophotonic waveguide. We carry out few-photon transport experiments and record the statistics of the light to reconstruct the scattering matrix elements of one- and two-photon components. This provides direct insight to the complex nonlinear photon interaction that contains rich many-body physics.

4.
Phys Rev Lett ; 120(15): 153602, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756880

RESUMO

We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U(1)-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α=0.3, and close to the Toulouse point α=1/2, where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017)NPAHAX1745-247310.1038/nphys3905] and can be extended to study multiphoton scattering.

5.
Phys Rev Lett ; 119(15): 153601, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077426

RESUMO

In this work we develop an experimental procedure to interrogate the single- and multiphoton scattering matrices of an unknown quantum system interacting with propagating photons. Our proposal requires coherent state laser or microwave inputs and homodyne detection at the scatterer's output, and provides simultaneous information about multiple-elastic and inelastic-segments of the scattering matrix. The method is resilient to detector noise and its errors can be made arbitrarily small by combining experiments at various laser powers. Finally, we show that the tomography of scattering has to be performed using pulsed lasers to efficiently gather information about the nonlinear processes in the scatterer.

6.
Phys Rev Lett ; 113(19): 193601, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415906

RESUMO

We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions.

7.
Phys Rev Lett ; 112(7): 073603, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579598

RESUMO

From the interaction between a frequency comb and an atomic qubit, we derive quantum protocols for the determination of the carrier-envelope offset phase, using the qubit coherence as a reference, and without the need of frequency doubling or an octave spanning comb. Compared with a trivial interference protocol, the multipulse protocol results in a polynomial enhancement of the sensitivity O(N-2) with the number N of laser pulses involved. We specialize the protocols using optical or hyperfine qubits, Λ schemes, and Raman transitions, and introduce methods where the reference is another phase-stable cw laser or frequency comb.

8.
Phys Rev Lett ; 112(18): 180405, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856680

RESUMO

We introduce a model of quantum magnetism induced by the nonperturbative exchange of microwave photons between distant superconducting qubits. By interconnecting qubits and cavities, we obtain a spin-boson lattice model that exhibits a quantum phase transition where both qubits and cavities spontaneously polarize. We present a many-body ansatz that captures this phenomenon all the way, from a the perturbative dispersive regime where photons can be traced out, to the nonperturbative ultrastrong coupling regime where photons must be treated on the same footing as qubits. Our ansatz also reproduces the low-energy excitations, which are described by hybridized spin-photon quasiparticles, and can be probed spectroscopically from transmission experiments in circuit QED, as shown by simulating a possible experiment by matrix-product-state methods.

9.
Phys Rev Lett ; 112(7): 074101, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579602

RESUMO

The semiclassical and quantum dynamics of two ultrastrongly coupled nonlinear resonators cannot be explained using the discrete nonlinear Schrödinger equation or the Bose-Hubbard model, respectively. Instead, a model beyond the rotating wave approximation must be studied. In the semiclassical limit this model is not integrable and becomes chaotic for a finite window of parameters. For the quantum dimer we find corresponding regions of stability and chaos. The more striking consequence for both semiclassical and quantum chaos is that the tunneling time between the sites becomes unpredictable. These results, including the transition to chaos, can be tested in experiments with superconducting microwave resonators.


Assuntos
Modelos Teóricos , Dinâmica não Linear , Teoria Quântica
10.
Phys Rev Lett ; 111(7): 073602, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992064

RESUMO

We present a scalable and tunable framework for the quantum simulation of critical dissipative models based on a circuit QED cavity array interacting with driven superconducting qubits. We will show that the strongly correlated many-body state of the cavities can be mapped into the state of propagating photons in a transmission line. This allows not only for an efficient way of accessing the correlations in the many-body system, but also provides a bright source of chiral entangled light where directionality and entanglement are assisted by collective phenomena and breaking of reflection symmetry.

11.
Phys Rev Lett ; 108(4): 043602, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400842

RESUMO

We show that inducing sidebands in the emission of a single emitter into a one-dimensional waveguide, together with a dissipative repumping process, a photon field is cooled down to a multimode squeezed vacuum. Our method does not require being in the strong coupling regime, works with a continuum of propagating field modes, and leads to sources of tunable multimode squeezed light in circuit-QED systems.

12.
Phys Rev Lett ; 107(15): 150402, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107272

RESUMO

We propose a feasible experimental test of a 1D version of the Fermi problem using superconducting qubits. We give an explicit nonperturbative proof of strict causality in this model, showing that the probability of excitation of a two-level artificial atom with a dipolar coupling to a quantum field is completely independent of the other qubit until signals from it may arrive. We explain why this is in perfect agreement with the existence of nonlocal correlations and previous results which were used to claim apparent causality problems for Fermi's two-atom system.

13.
Opt Express ; 12(1): 42-54, 2004 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19471510

RESUMO

We develop a variational wave function for the ground state of a one-dimensional bosonic lattice gas. The variational theory is initially developed for the quantum rotor model and later on extended to the Bose- Hubbard model. This theory is compared with quasi-exact numerical results obtained by Density Matrix Renormalization Group (DMRG) studies and with results from other analytical approximations. Our approach accurately gives local properties for strong and weak interactions, and it also describes the crossover from the superfluid phase to the Mott-insulator phase.

14.
Phys Rev Lett ; 100(11): 110406, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18517766

RESUMO

We propose a scheme to create a metastable state of paired bosonic atoms in an optical lattice. The most salient features of this state are that the wave function of each pair is a Bell state and that the pair size spans half the lattice, similar to fermionic Cooper pairs. This mesoscopic state can be created with a dynamical process that involves crossing a quantum phase transition and which is supported by the symmetries of the physical system. We characterize the final state by means of a measurable two-particle correlator that detects both the presence of the pairs and their size.

15.
Philos Trans A Math Phys Eng Sci ; 361(1808): 1537-48, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12869328

RESUMO

We analyse an implementation of a quantum computer using bosonic atoms in an optical lattice. We show that, even though the number of atoms per site and the tunnelling rate between neighbouring sites is unknown, one may operate a universal set of gates by means of adiabatic passage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA