Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Intern Emerg Med ; 18(6): 1711-1722, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37349618

RESUMO

COVID-19 is responsible for high mortality, but robust machine learning-based predictors of mortality are lacking. To generate a model for predicting mortality in patients hospitalized with COVID-19 using Gradient Boosting Decision Trees (GBDT). The Spanish SEMI-COVID-19 registry includes 24,514 pseudo-anonymized cases of patients hospitalized with COVID-19 from 1 February 2020 to 5 December 2021. This registry was used as a GBDT machine learning model, employing the CatBoost and BorutaShap classifier to select the most relevant indicators and generate a mortality prediction model by risk level, ranging from 0 to 1. The model was validated by separating patients according to admission date, using the period 1 February to 31 December 2020 (first and second waves, pre-vaccination period) for training, and 1 January to 30 November 2021 (vaccination period) for the test group. An ensemble of ten models with different random seeds was constructed, separating 80% of the patients for training and 20% from the end of the training period for cross-validation. The area under the receiver operating characteristics curve (AUC) was used as a performance metric. Clinical and laboratory data from 23,983 patients were analyzed. CatBoost mortality prediction models achieved an AUC performance of 84.76 (standard deviation 0.45) for patients in the test group (potentially vaccinated patients not included in model training) using 16 features. The performance of the 16-parameter GBDT model for predicting COVID-19 hospital mortality, although requiring a relatively large number of predictors, shows a high predictive capacity.


Assuntos
COVID-19 , Humanos , Mortalidade Hospitalar , Aprendizado de Máquina , Sistema de Registros
2.
J Clin Med ; 9(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137919

RESUMO

(1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish Society of Internal Medicine (SEMI)-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (standard deviation (SD) 16). The main pre-admission comorbidities were arterial hypertension (6030, 50%), hyperlipidemia (4741, 39.4%) and diabetes mellitus (2309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; p < 0.001). The multivariate study identified age, gender (male), body mass index (BMI), arterial hypertension, chronic obstructive pulmonary disease (COPD), ischemic cardiopathy, chronic heart failure, chronic hepatopathy, Charlson's index, heart rate and respiratory rate upon admission >20 bpm, lower PaO2/FiO2 at admission, higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH), and the phenotypic cluster as independent factors for in-hospital death. (4) Conclusions: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA