RESUMO
Aminopeptidase N (APN) and neprilysin (NEP) inactivate neuropeptides released into the brain extracellular fluid. We previously showed that the expression of pyroglutamyl peptidase II (PPII), the TRH degrading ecto-enzyme, is regulated in rat brain by amygdaline kindling, a paradigm that activates neuronal pathways in the limbic system increasing the expression of several neuropeptides including TRH and opioids. To understand the specificity of this phenomenon, we studied APN and NEP expression in brains of partially or fully kindled rats (stage II and V), sacrificed 6 h after last stimulus, compared with sham-operated animals. In situ hybridization analysis of NEP mRNA levels showed decreased expression at stage II in CA1, CA2, olfactory tubercle and medial mammillary nucleus, and increased at stage V in CA1 and CA2 cells. These changes were specific for the ipsilateral side. APN mRNA levels, semi-quantified by RT-PCR, were decreased at stage II and increased at stage V, in frontal cortex-olfactory tubercle, and hippocampus. NEP and APN enzymatic activities, determined by fluorometric assays, followed similar variations to their respective mRNA levels. The coordinated changes (in some regions) of NEP and APN expression were opposite to those previously observed for PPII mRNA and activity levels in limbic regions. These results demonstrate that expression of ectopeptidases can be regulated when peptide neurons are activated and, that regulation is enzyme-, region-, and stage-specific.
Assuntos
Antígenos CD13/metabolismo , Excitação Neurológica/fisiologia , Sistema Límbico/fisiologia , Neprilisina/metabolismo , Animais , Antígenos CD13/genética , Estimulação Elétrica , Hibridização In Situ , Masculino , Neprilisina/genética , Ratos , Ratos WistarRESUMO
TRH administration induces arousal, improves cognition, and modulates glutamatergic and cholinergic transmission in hippocampal neurons. To study the possible involvement of TRH neurons in learning and memory processes, gene expression of TRH, its receptors, and pyroglutamyl peptidase (PPII), were measured in limbic regions of water-maze trained rats. Hypothalamus and amygdala showed changes related to the task but not specific to spatial learning while in hippocampus, pro-TRH and TRH-R1 mRNA levels were specifically increased in those animals trained to find a hidden platform. Variation of TRH content and mRNA levels of pro-TRH, TRH-R1, TRH-R2 and PPII are observed in conditions known to activate TRH hypophysiotropic neurons. Changes in some of these parameters could indicate the activation of TRHergic neurons and their possible involvement in some memory related process. Male Wistar rats were immersed (10 times) for 1, 3 or 5 days in a Morris water-maze containing, or not (yoked control) a platform and sacrificed 5, 30 and 60 min after last trial. TRH content and TSH serum levels were determined by radioimmunoassay; mRNA levels of pro-TRH, TRH-R1, TRH-R2, and PPII, by RT-PCR. Exclusive changes due to spatial training were observed in posterior hippocampus of rats trained for 5 days sacrificed after 60min: decreased TRH content and increased mRNA levels of pro-TRH and TRH-R1, particularly in CA3 region (measured by in situ hybridization). The hypothalamus-pituitary axis responded in both yoked and trained animals (increasing serum TSH levels and pro-TRH expression, due to swim-stress); in the amygdala of both groups, pro-TRH expression increased while diminished that of both receptors and PPII. Differential expression of these parameters suggests involvement of TRH hippocampal neurons in memory formation processes while changes in amygdala could relate to TRH anxiolytic role. The differential modulation in anterior and posterior portions of the hippocampus is discussed.