Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Breed Genet ; 140(1): 60-78, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35946919

RESUMO

Single-step genomic BLUP (ssGBLUP) relies on the combination of the genomic ( G $$ \mathbf{G} $$ ) and pedigree relationship matrices for all ( A $$ \mathbf{A} $$ ) and genotyped ( A 22 $$ {\mathbf{A}}_{22} $$ ) animals. The procedure ensures G $$ \mathbf{G} $$ and A 22 $$ {\mathbf{A}}_{22} $$ are compatible so that both matrices refer to the same genetic base ('tuning'). Then G $$ \mathbf{G} $$ is combined with a proportion of A 22 $$ {\mathbf{A}}_{22} $$ ('blending') to avoid singularity problems and to account for the polygenic component not accounted for by markers. This computational procedure has been implemented in the reverse order (blending before tuning) following the sequential research developments. However, blending before tuning may result in less optimal tuning because the blended matrix already contains a proportion of A 22 $$ {\mathbf{A}}_{22} $$ . In this study, the impact of 'tuning before blending' was compared with 'blending before tuning' on genomic estimated breeding values (GEBV), single nucleotide polymorphism (SNP) effects and indirect predictions (IP) from ssGBLUP using American Angus Association and Holstein Association USA, Inc. data. Two slightly different tuning methods were used; one that adjusts the mean diagonals and off-diagonals of G $$ \mathbf{G} $$ to be similar to those in A 22 $$ {\mathbf{A}}_{22} $$ and another one that adjusts based on the average difference between all elements of G $$ \mathbf{G} $$ and A 22 $$ {\mathbf{A}}_{22} $$ . Over 6 million Angus growth records and 5.9 million Holstein udder depth records were available. Genomic information was available on 51,478 Angus and 105,116 Holstein animals. Average realized relationship estimates among groups of animals were similar across scenarios. Scatterplots show that GEBV, SNP effects and IP did not noticeably change for all animals in the evaluation regardless of the order of computations and when using blending parameter of 0.05. Formulas were derived to determine the blending parameter that maximizes changes in the genomic relationship matrix and GEBV when changing the order of blending and tuning. Algebraically, the change is maximized when the blending parameter is equal to 0.5. Overall, tuning G $$ \mathbf{G} $$ before blending, regardless of blending parameter used, had a negligible impact on genomic predictions and SNP effects in this study.


Assuntos
Genômica , Animais
2.
BMC Genomics ; 22(1): 92, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516179

RESUMO

BACKGROUND: One of the most important goals for the rainbow trout aquaculture industry is to improve fillet yield and fillet quality. Previously, we showed that a 50 K transcribed-SNP chip can be used to detect quantitative trait loci (QTL) associated with fillet yield and fillet firmness. In this study, data from 1568 fish genotyped for the 50 K transcribed-SNP chip and ~ 774 fish phenotyped for fillet yield and fillet firmness were used in a single-step genomic BLUP (ssGBLUP) model to compute the genomic estimated breeding values (GEBV). In addition, pedigree-based best linear unbiased prediction (PBLUP) was used to calculate traditional, family-based estimated breeding values (EBV). RESULTS: The genomic predictions outperformed the traditional EBV by 35% for fillet yield and 42% for fillet firmness. The predictive ability for fillet yield and fillet firmness was 0.19-0.20 with PBLUP, and 0.27 with ssGBLUP. Additionally, reducing SNP panel densities indicated that using 500-800 SNPs in genomic predictions still provides predictive abilities higher than PBLUP. CONCLUSION: These results suggest that genomic evaluation is a feasible strategy to identify and select fish with superior genetic merit within rainbow trout families, even with low-density SNP panels.


Assuntos
Oncorhynchus mykiss , Animais , Genômica , Genótipo , Modelos Genéticos , Oncorhynchus mykiss/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Genet Sel Evol ; 50(1): 66, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547740

RESUMO

BACKGROUND: Catfish farming is the largest segment of US aquaculture and research is ongoing to improve production efficiency, including genetic selection programs to improve economically important traits. The objectives of this study were to investigate the use of genomic selection to improve breeding value accuracy and to identify major single nucleotide polymorphisms (SNPs) associated with harvest weight and residual carcass weight in a channel catfish population. Phenotypes were available for harvest weight (n = 27,160) and residual carcass weight (n = 6020), and 36,365 pedigree records were available. After quality control, genotypes for 54,837 SNPs were available for 2911 fish. Estimated breeding values (EBV) were obtained with traditional pedigree-based best linear unbiased prediction (BLUP) and genomic (G)EBV were estimated with single-step genomic BLUP (ssGBLUP). EBV and GEBV prediction accuracies were evaluated using different validation strategies. The ability to predict future performance was calculated as the correlation between EBV or GEBV and adjusted phenotypes. RESULTS: Compared to the pedigree BLUP, ssGBLUP increased predictive ability up to 28% and 36% for harvest weight and residual carcass weight, respectively; and GEBV were superior to EBV for all validation strategies tested. Breeding value inflation was assessed as the regression coefficient of adjusted phenotypes on breeding values, and the results indicated that genomic information reduced breeding value inflation. Genome-wide association studies based on windows of 20 adjacent SNPs indicated that both harvest weight and residual carcass weight have a polygenic architecture with no major SNPs (the largest SNPs explained 0.96 and 1.19% of the additive genetic variation for harvest weight and residual carcass weight respectively). CONCLUSIONS: Genomic evaluation improves the ability to predict future performance relative to traditional BLUP and will allow more accurate identification of genetically superior individuals within catfish families.


Assuntos
Previsões/métodos , Ictaluridae/genética , Seleção Artificial/genética , Criação de Animais Domésticos/métodos , Animais , Peso Corporal/genética , Cruzamento , Feminino , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Masculino , Modelos Genéticos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável
4.
J Anim Sci ; 99(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33544869

RESUMO

The stability of genomic evaluations depends on the amount of data and population parameters. When the dataset is large enough to estimate the value of nearly all independent chromosome segments (~10K in American Angus cattle), the accuracy and persistency of breeding values will be high. The objective of this study was to investigate changes in estimated breeding values (EBV) and genomic EBV (GEBV) across monthly evaluations for 1 yr in a large genotyped population of beef cattle. The American Angus data used included 8.2 million records for birth weight, 8.9 for weaning weight, and 4.4 for postweaning gain. A total of 10.1 million animals born until December 2017 had pedigree information, and 484,074 were genotyped. A truncated dataset included animals born until December 2016. To mimic a scenario with monthly evaluations, 2017 data were added 1 mo at a time to estimate EBV using best linear unbiased prediction (BLUP) and GEBV using single-step genomic BLUP with the algorithm for proven and young (APY) with core group fixed for 1 yr or updated monthly. Predictions from monthly evaluations in 2017 were contrasted with the predictions of the evaluation in December 2016 or the previous month for all genotyped animals born until December 2016 with or without their own phenotypes or progeny phenotypes. Changes in EBV and GEBV were similar across traits, and only results for weaning weight are presented. Correlations between evaluations from December 2016 and the 12 consecutive evaluations were ≥0.97 for EBV and ≥0.99 for GEBV. Average absolute changes for EBV were about two times smaller than for GEBV, except for animals with new progeny phenotypes (≤0.12 and ≤0.11 additive genetic SD [SDa] for EBV and GEBV). The maximum absolute changes for EBV (≤2.95 SDa) were greater than for GEBV (≤1.59 SDa). The average(maximum) absolute GEBV changes for young animals from December 2016 to January and December 2017 ranged from 0.05(0.25) to 0.10(0.53) SDa. Corresponding ranges for animals with new progeny phenotypes were from 0.05(0.88) to 0.11(1.59) SDa for GEBV changes. The average absolute change in EBV(GEBV) from December 2016 to December 2017 for sires with ≤50 progeny phenotypes was 0.26(0.14) and for sires with >50 progeny phenotypes was 0.25(0.16) SDa. Updating the core group in APY without adding data created an average absolute change of 0.07 SDa in GEBV. Genomic evaluations in large genotyped populations are as stable and persistent as the traditional genetic evaluations, with less extreme changes.


Assuntos
Genoma , Modelos Genéticos , Animais , Bovinos/genética , Feminino , Genômica , Genótipo , Linhagem , Fenótipo , Gravidez
5.
J Anim Sci ; 98(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374831

RESUMO

Reliable single-nucleotide polymorphisms (SNP) effects from genomic best linear unbiased prediction BLUP (GBLUP) and single-step GBLUP (ssGBLUP) are needed to calculate indirect predictions (IP) for young genotyped animals and animals not included in official evaluations. Obtaining reliable SNP effects and IP requires a minimum number of animals and when a large number of genotyped animals are available, the algorithm for proven and young (APY) may be needed. Thus, the objectives of this study were to evaluate IP with an increasingly larger number of genotyped animals and to determine the minimum number of animals needed to compute reliable SNP effects and IP. Genotypes and phenotypes for birth weight, weaning weight, and postweaning gain were provided by the American Angus Association. The number of animals with phenotypes was more than 3.8 million. Genotyped animals were assigned to three cumulative year-classes: born until 2013 (N = 114,937), born until 2014 (N = 183,847), and born until 2015 (N = 280,506). A three-trait model was fitted using the APY algorithm with 19,021 core animals under two scenarios: 1) core 2013 (random sample of animals born until 2013) used for all year-classes and 2) core 2014 (random sample of animals born until 2014) used for year-class 2014 and core 2015 (random sample of animals born until 2015) used for year-class 2015. GBLUP used phenotypes from genotyped animals only, whereas ssGBLUP used all available phenotypes. SNP effects were predicted using genomic estimated breeding values (GEBV) from either all genotyped animals or only core animals. The correlations between GEBV from GBLUP and IP obtained using SNP effects from core 2013 were ≥0.99 for animals born in 2013 but as low as 0.07 for animals born in 2014 and 2015. Conversely, the correlations between GEBV from ssGBLUP and IP were ≥0.99 for animals born in all years. IP predictive abilities computed with GEBV from ssGBLUP and SNP predictions based on only core animals were as high as those based on all genotyped animals. The correlations between GEBV and IP from ssGBLUP were ≥0.76, ≥0.90, and ≥0.98 when SNP effects were computed using 2k, 5k, and 15k core animals. Suitable IP based on GEBV from GBLUP can be obtained when SNP predictions are based on an appropriate number of core animals, but a considerable decline in IP accuracy can occur in subsequent years. Conversely, IP from ssGBLUP based on large numbers of phenotypes from non-genotyped animals have persistent accuracy over time.


Assuntos
Bovinos/genética , Genótipo , Modelos Genéticos , Algoritmos , Animais , Peso ao Nascer/genética , Cruzamento , Bovinos/fisiologia , Feminino , Genoma , Genômica , Parto , Polimorfismo de Nucleotídeo Único , Gravidez , Projetos de Pesquisa , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA