RESUMO
Introduction SUV measurements from static brain [18F]FDG PET acquisitions are a commonly used tool in preclinical research, providing a simple alternative for kinetic modelling, which requires complex and time-consuming dynamic acquisitions. However, SUV can be severely affected by the animal handling and preconditioning protocols, primarily by those that may induce changes in blood glucose levels (BGL). Here, we aimed at developing and investigating the feasibility of SUV-based approaches for a wide range of BGL far beyond normal values, and consequently, to develop and validate a new model to generate standardized and reproducible SUV measurements for any BGL. Material and methods We performed dynamic and static brain [18F]FDG PET acquisitions in 52 male Sprague-Dawley rats sorted into control (n = 10), non-fasting (n = 14), insulin-induced hypoglycemia (n = 12) and glucagon-induced hyperglycemia (n = 16) groups. Brain [18F]FDG PET images were cropped, aligned and co-registered to a standard template to calculate whole-brain and regional SUV. Cerebral Metabolic Rate of Glucose (CMRglc) was also estimated from 2-Tissue Compartment Model (2TCM) and Patlak plot for validation purposes. Results Our results showed that BGL=100±6 mg/dL can be considered a reproducible reference value for normoglycemia. Furthermore, we successfully established a 2nd-degree polynomial model (C1=0.66E-4, C2=-0.0408 and C3=7.298) relying exclusively on BGL measures at pre-[18F]FDG injection time, that characterizes more precisely the relationship between SUV and BGL for a wide range of BGL values (from 10 to 338 mg/dL). We confirmed the ability of this model to generate corrected SUV estimations that are highly correlated to CMRglc estimations (R2= 0.54 2TCM CMRgluc and R2= 0.49 Patlak CMRgluc). Besides, slight regional differences in SUV were found in animals from extreme BGL groups, showing that [18F]FDG uptake is mostly directed toward central regions of the brain when BGLs are significantly decreased. Conclusion Our study successfully established a non-linear model that relies exclusively on pre-scan BGL measurements to characterize the relationship between [18F]FDG SUV and BGL. The extensive validation confirmed its ability to generate SUV-based surrogates of CMRglu along a wide range of BGL and it holds the potential to be adopted as a standard protocol by the preclinical neuroimaging community using brain [18F]FDG PET imaging.
Assuntos
Glicemia , Encéfalo , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos Sprague-Dawley , Animais , Fluordesoxiglucose F18/farmacocinética , Masculino , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/normas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glicemia/metabolismo , Ratos , Hipoglicemia/diagnóstico por imagem , Hipoglicemia/metabolismo , Hiperglicemia/diagnóstico por imagem , Hiperglicemia/metabolismoRESUMO
Celia's encephalopathy or progressive encephalopathy with/without lipodystrophy is a neurodegenerative disease with a fatal prognosis in childhood. It is generally caused by the c.985C > T variant in the BSCL2 gene, leading to the skipping of exon 7 and resulting in an aberrant seipin protein (Celia-seipin). To precisely define the temporal evolution and the mechanisms involved in neurodegeneration, lipodystrophy and fatty liver in Celia's encephalopathy, our group has generated the first global knock-in murine model for the aberrant human transcript of BSCL2 (Bscl2Celia/Celia) using a strategy based on the Cre/loxP recombination system. In order to carry out a characterization at the neurological, adipose tissue and hepatic level, behavioral studies, brain PET, metabolic, histological and molecular studies were performed. Around 12% of homozygous and 5.4% of heterozygous knock-in mice showed severe neurological symptoms early in life, and their life expectancy was dramatically reduced. Severe generalized lipodystrophy and mild hepatic steatosis were present in these affected animals, while serum triglycerides and glucose metabolism were normal, with no insulin resistance. Furthermore, the study revealed a reduction in brain glucose uptake, along with patchy loss of Purkinje cells and the presence of intranuclear inclusions in cerebellar cortex cells. Homozygous, non-severely-affected knock-in mice showed a decrease in locomotor activity and greater anxiety compared with their wild type littermates. Bscl2Celia/Celia is the first murine model of Celia's encephalopathy which partially recapitulates the phenotype and severe neurodegenerative picture suffered by these patients. This model will provide a helpful tool to investigate both the progressive encephalopathy with/without lipodystrophy and congenital generalized lipodystrophy.
RESUMO
Adenosine A2A and dopamine D2 receptors in the basal ganglia form heterotetrameric structures that are involved in the regulation of motor activity and neuropsychiatric functions. The present study examines the A2A receptor-mediated modulation of D2 receptor binding in vivo using positron emission tomography (PET) with the D2 antagonist tracer [11C]raclopride. Healthy male Wistar rats (n = 8) were scanned (60 min dynamic scan) with [11C]raclopride at baseline and 7 days later following an acute administration of the A2A agonist CGS21680 (1 mg/kg), using a MicroPET Focus-220 camera. Nondisplaceable binding potential (BPND) values were calculated using a simplified reference tissue model (SRTM), with cerebellum as the reference tissue. SRTM analysis did not show any significant changes in [11C]raclopride BPND (p = 0.102) in striatum after CGS21680 administration compared to the baseline. As CGS21680 strongly affects hemodynamics, we also used arterial blood sampling and a metabolite-corrected plasma input function for compartment modeling using the reversible two-tissue compartment model (2TCM) to obtain the BPND from the k3/k4 ratio and from the striatum/cerebellum volume of distribution ratio (DVR) in a second group of animals. These rats underwent dynamic [11C]raclopride scans after pretreatment with a vehicle (n = 5), a single dose of CGS21680 (1 mg/kg, n = 5), or a single dose of the A2A antagonist KW6002 (1 mg/kg, n = 5). The parent fraction in plasma was significantly higher in the CGS21680-treated group (p = 0.0001) compared to the vehicle-treated group. GCS21680 administration significantly reduced the striatal k3/k4 ratio (p < 0.01), but k3 and k4 estimates may be less reliable. The BPND (DVR-1) decreased from 1.963 ± 0.27 in the vehicle-treated group to 1.53 ± 0.55 (p = 0.080) or 1.961 ± 0.11 (p = 0.993) after the administration of CGS21680 or KW6002, respectively. Our study suggests that the A2A agonist CGS21680, but not the antagonist KW6002, may reduce the D2 receptor availability in the striatum.
Assuntos
Dopamina , Receptor A2A de Adenosina , Adenosina/metabolismo , Agonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Radioisótopos de Carbono , Corpo Estriado/metabolismo , Ligantes , Masculino , Tomografia por Emissão de Pósitrons/métodos , Racloprida , Ratos , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Receptores Dopaminérgicos/metabolismo , Roedores/metabolismoRESUMO
PURPOSE: P-glycoprotein (P-gp) function is altered in several brain disorders; thus, it is of interest to monitor the P-gp function in vivo using PET. (R)-[11C]verapamil is considered the gold standard tracer to measure the P-gp function; however, it presents some drawbacks that limit its use. New P-gp tracers have been developed with improved properties, such as [18F]MC225. This study compares the characteristics of (R)-[11C]verapamil and [18F]MC225 in the same subjects. METHODS: Three non-human primates underwent 4 PET scans: 2 with (R)-[11C]verapamil and 2 with [18F]MC225, at baseline and after P-gp inhibition. The 30-min PET data were analyzed using 1-Tissue Compartment Model (1-TCM) and metabolite-corrected plasma as input function. Tracer kinetic parameters at baseline and after inhibition were compared. Regional differences and simplified methods to quantify the P-gp function were also assessed. RESULTS: At baseline, [18F]MC225 VT values were higher, and k2 values were lower than those of (R)-[11C]verapamil, whereas K1 values were not significantly different. After inhibition, VT values of the 2 tracers were similar; however, (R)-[11C]verapamil K1 and k2 values were higher than those of [18F]MC225. Significant regional differences between tracers were found at baseline, which disappeared after inhibition. The positive slope of the SUV-TAC was positively correlated to the K1 and VT of both tracers. CONCLUSION: [18F]MC225 and (R)-[11C]verapamil show comparable sensitivity to measure the P-gp function in non-human primates. Moreover, this study highlights the 30-min VT as the best parameter to measure decreases in the P-gp function with both tracers. [18F]MC225 may become the first radiofluorinated tracer able to measure decreases and increases in the P-gp function due to its higher baseline VT.
Assuntos
Barreira Hematoencefálica , Verapamil , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons , Primatas/metabolismoRESUMO
P-Glycoprotein (P-gp) is an efflux pump located at the blood-brain barrier (BBB) that contributes to the protection of the central nervous system by transporting neurotoxic compounds out of the brain. A decline in P-gp function has been related to the pathogenesis of neurodegenerative diseases. P-gp inducers can increase the P-gp function and are considered as potential candidates for the treatment of such disorders. The P-gp inducer MC111 increased P-gp expression and function in SW480 human colon adenocarcinoma and colo-320 cells, respectively. Our study aims to evaluate the P-gp inducing effect of MC111 in the whole brain in vivo, using the P-gp tracer [18F]MC225 and positron emission tomography (PET). Eighteen Wistar rats were treated with either vehicle solution, 4.5 mg/kg of MC111 (low-dose group), or 6 mg/kg of MC111 (high-dose group). Animals underwent a 60 min dynamic PET scan with arterial-blood sampling, 24 h after treatment with the inducer. Data were analyzed using the 1-tissue-compartment model and metabolite-corrected plasma as the input function. Model parameters such as the influx constant (K1) and volume of distribution (VT) were calculated, which reflect the in vivo P-gp function. P-gp and pregnane xenobiotic receptor (PXR) expression levels of the whole brain were assessed using western blot. The administration of MC111 decreased K1 and VT of [18F]MC225 in the whole brain and all of the selected brain regions. In the high-dose group, whole-brain K1 was decreased by 34% (K1-high-dose = 0.20 ± 0.02 vs K1-control = 0.30 ± 0.02; p < 0.001) and in the low-dose group by 7% (K1-low-dose = 0.28 ± 0.02 vs K1-control = 0.30 ± 0.02; p = 0.42) compared to controls. Whole-brain VT was decreased by 25% in the high-dose group (VT-high-dose = 5.92 ± 0.41 vs VT-control = 7.82 ± 0.38; p < 0.001) and by 6% in the low-dose group (VT-low-dose = 7.35 ± 0.38 vs VT-control = 7.82 ± 0.37; p = 0.38) compared to controls. k2 values did not vary after treatment. The treatment did not affect the metabolism of [18F]MC225. Western blot studies using the whole-brain tissue did not detect changes in the P-gp expression, however, preliminary results using isolated brain capillaries found an increasing trend up to 37% in treated rats. The decrease in K1 and VT values after treatment with the inducer indicates an increase in the P-gp functionality at the BBB of treated rats. Moreover, preliminary results using brain endothelial cells also sustained the increase in the P-gp expression. In conclusion, the results verify that MC111 induces P-gp expression and function at the BBB in rats. An increasing trend regarding the P-gp expression levels is found using western blot and an increased P-gp function is confirmed with [18F]MC225 and PET.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Isoquinolinas/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Tetra-Hidronaftalenos/administração & dosagem , Animais , Transporte Biológico , Barreira Hematoencefálica/citologia , Células Endoteliais/metabolismo , Isoquinolinas/sangue , Isoquinolinas/síntese química , Cinética , Masculino , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/síntese química , Ratos , Ratos Wistar , Tetra-Hidronaftalenos/sangue , Tetra-Hidronaftalenos/síntese químicaRESUMO
(R)-[11C]verapamil is a radiotracer widely used for the evaluation of the P-glycoprotein (P-gp) function at the blood-brain barrier (BBB). Several studies have evaluated the pharmacokinetics of (R)-[11C]verapamil in rats and humans under different conditions. However, to the best of our knowledge, the pharmacokinetics of (R)-[11C]verapamil have not yet been evaluated in nonhuman primates. Our study aims to establish (R)-[11C]verapamil as a reference P-gp tracer for comparison of a newly developed P-gp positron emission tomography (PET) tracer in a species close to humans. Therefore, the study assesses the kinetics of (R)-[11C]verapamil and evaluates the effect of scan duration and P-gp inhibition on estimated pharmacokinetic parameters. Three nonhuman primates underwent two dynamic 91 min PET scans with arterial blood sampling, one at baseline and another after inhibition of the P-gp function. The (R)-[11C]verapamil data were analyzed using 1-tissue compartment model (1-TCM) and 2-tissue compartment model fits using plasma-corrected for polar radio-metabolites or non-corrected for radio-metabolites as an input function and with various scan durations (10, 20, 30, 60, and 91 min). The preferred model was chosen according to the Akaike information criterion and the standard errors (SE %) of the estimated parameters. 1-TCM was selected as the model of choice to analyze the (R)-[11C]verapamil data at baseline and after inhibition and for all scan durations tested. The volume of distribution (VT) and the efflux constant k2 estimations were affected by the evaluated scan durations, whereas the influx constant K1 estimations remained relatively constant. After P-gp inhibition (tariquidar, 8 mg/kg), in a 91 min scan duration, the whole-brain VT increased significantly up to 208% (p < 0.001) and K1 up to 159% (p < 0.001) compared with baseline scans. The k2 values decreased significantly after P-gp inhibition in all the scan durations except for the 91 min scans. This study suggests the use of K1, calculated with 1-TCM and using short PET scans (10 to 30 min), as a suitable parameter to measure the P-gp function at the BBB of nonhuman primates.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Radioisótopos de Carbono/metabolismo , Primatas/metabolismo , Verapamil/farmacocinética , Algoritmos , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cinética , Macaca mulatta , Masculino , Tomografia por Emissão de Pósitrons/métodos , Quinolinas/farmacocinética , CintilografiaRESUMO
[18F]MC225 has been developed as a weak substrate of P-glycoprotein (P-gp) aimed to measure changes in the P-gp function at the blood-brain barrier with positron emission tomography. This study evaluates [18F]MC225 kinetics in non-human primates and investigates the effect of both scan duration and P-gp inhibition. Three rhesus monkeys underwent two 91-min dynamic scans with blood sampling at baseline and after P-gp inhibition (8 mg/kg tariquidar). Data were analyzed using the 1-tissue compartment model (1-TCM) and 2-tissue compartment model (2-TCM) fits using metabolite-corrected plasma as the input function and for various scan durations (10, 20, 30, 60, and 91 min). The preferred model was chosen according to the Akaike information criterion and the standard errors (%) of the estimated parameters. For the 91-min scan duration, the influx constant K1 increased by 40.7% and the volume of distribution (VT) by 30.4% after P-gp inhibition, while the efflux constant k2 did not change significantly. Similar changes were found for all evaluated scan durations. K1 did not depend on scan duration (10 min-K1 = 0.2191 vs 91 min-K1 = 0.2258), while VT and k2 did. A scan duration of 10 min seems sufficient to properly evaluate the P-gp function using K1 obtained with 1-TCM. For the 91-min scan, VT and K1 can be estimated with a 2-TCM, and both parameters can be used to assess P-gp function.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Radioisótopos de Flúor/farmacocinética , Isoquinolinas/farmacocinética , Primatas/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Tetra-Hidronaftalenos/farmacocinética , Animais , Encéfalo/metabolismo , Cinética , Macaca mulatta , Masculino , Tomografia por Emissão de Pósitrons/métodos , Quinolinas/farmacocinética , Cintilografia/métodosRESUMO
Intracerebral hemorrhage (ICH), being the most severe cerebrovascular disease, accounts for 10-15% of all strokes. Hematoma expansion is one of the most important factors associated with poor outcome in intracerebral hemorrhage (ICH). Several studies have suggested that an "ischemic penumbra" might arise when the hematoma has a large expansion, but clinical studies are inconclusive. We performed a preclinical study to demonstrate the presence of hypoxic-ischemic tissue around the hematoma by means of longitudinal [18F]-fluoromisonidazole ([18F]-FMISO) PET/MRI studies over time in an experimental ICH model. Our results showed that all [18F]-FMISO PET/MRI images exhibited hypoxic-ischemic tissue around the hematoma area. A significant increase of [18F]-FMISO uptake was found at 18-24 h post-ICH when the maximum of hematoma volume is achieved and this increase disappeared before 42 h. These results demonstrate the presence of hypoxic tissue around the hematoma and open the possibility of new therapies aimed to reduce ischemic damage associated with ICH.
Assuntos
Hemorragia Cerebral/complicações , Hematoma/diagnóstico , Hipóxia-Isquemia Encefálica/diagnóstico , Misonidazol/análogos & derivados , Acidente Vascular Cerebral/prevenção & controle , Idoso , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Hematoma/etiologia , Hematoma/patologia , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Misonidazol/administração & dosagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Ratos , Acidente Vascular Cerebral/etiologiaAssuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de PósitronsRESUMO
INTRODUCTION: Glioblastomas present intensive angiogenesis, thus anti-Vascular Endothelial Growth Factor (VEGF) antibodies (mAbs) have been proposed as promising therapies. However, the results of clinical trials reported moderate toxicity and limited effectiveness. This study evaluates the in vivo pharmacokinetics and biodistribution of these mAbs in a growing model of glioblastoma in rats using Positron Emission Tomography (PET). MATERIAL: &Methods: mAbs were radiolabeled with zirconium-89. Four days after the model induction, animals were injected with 2.33 ± 1.3 MBq of [89Zr]-DFO-bevacizumab (n = 8) or 2.35 ± 0.26 MBq of [89Zr]-DFO-aflibercept (n = 6). PETs were performed at 0H, 48H, 168H, 240H, and 336H post-injection. Tumor induction was confirmed using [18F]-Fluorodeoxyglucose-PET and immunohistochemistry. Radiotracer uptake was estimated in all pre-defined Volumes-of-Interest. RESULTS: Anti-VEGF mAbs showed 100 % Radiochemical-Purity. [89Zr]-DFO-bevacizumab showed a significantly higher bioavailability in whole-blood. A significant increase in the tumor uptake was detectable at 168H PET with [89Zr]-DFO-bevacizumab meanwhile with [89Zr]-DFO-aflibercept it was only detectable at 336H. [89Zr]-DFO-bevacizumab tumor uptake was significantly higher than that of [89Zr]-DFO-aflibercept in all the scans. Tumor induction was confirmed in all animal models. CONCLUSION: MAbs detect VEGF-expression in glioblastoma models. Tumors were earlier targeted by Bevacizumab. The lower blood availability of aflibercept resulted in a lower tumor uptake than bevacizumab in all the scans.
Assuntos
Glioblastoma , Ratos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Distribuição Tecidual , Bevacizumab , Fator A de Crescimento do Endotélio Vascular , Desferroxamina , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais , Zircônio , Linhagem Celular TumoralRESUMO
Intra-articular (IA) administration of drugs for the treatment of diseases such as rheumatoid arthritis, osteoarthritis and psoriatic arthritis is a common strategy; however, the rapid clearance from the synovial fluid restricts their effectivity due to the limited retention time. Drug Delivery Systems (DDS) are currently being developed to increase their joint retention time. This study compares the biodistribution and retention time of a senolytic peptide (PEP), with potential application in osteoarthritis disease, and this senolytic peptide encapsulated in a DDS based on a lipid nanoemulsion (PEPNE) by using positron emission tomography (PET) imaging. To this aim, the PEP was conjugated with a chelating agent (DFO) and radiolabeled with zirconium-89 (89Zr). Then, [89Zr]-PEP was encapsulated in a novel nanoemulsion formulation, composed by vitamin E, sphingomyelin, and a lipid-PEG. Afterward, healthy rats were administered with either the [89Zr]-PEP or the [89Zr]-PEP-NE via IA injection and underwent PET scans at 0.5-, 24-, 48-, 72-, 168-, 240- and 336 h post-injection. To assess the biodistribution of both radiotracers, several volume-of-interest were manually drawn in different organs of the rat body and the %ID/organ was calculated. The [89Zr]-PEP was successfully encapsulated in the NE and their physicochemical properties were minimally affected by the radiolabeling buffer. Adequate stability of both [89Zr]-PEP and [89Zr]-PEP-NE was found in synovial fluid over 72 h. Quantitative data from PET images revealed a significantly higher [89Zr]-PEP-NE retention in the injected knee than with [89Zr]-PEP in all follow-up PET scans. The [89Zr]-PEP %ID/organ values in the liver and kidney were significantly higher than those from [89Zr]-PEP-NE, which might indicate a faster elimination of the [89Zr]-PEP. Therefore, the study highlights the higher retention time on the target site of the [89Zr]-PEP-NE which may improve the therapeutic effects of the peptide. Thereby, the novel nanoemulsion formulation seems to be a successful DDS for IA injection. In addition, these results represent the first study that evaluates the distribution of a PET-guided DDS after its IA administration.
Assuntos
Desferroxamina , Senoterapia , Ratos , Animais , Distribuição Tecidual , Desferroxamina/química , Tomografia por Emissão de Pósitrons/métodos , Peptídeos , Lipídeos , Linhagem Celular TumoralRESUMO
The Blood-Brain Barrier P-glycoprotein (P-gp) function can be altered in several neurodegenerative diseases and due to the administration of different drugs which may cause alterations in drug concentrations and consequently lead to a reduced effectiveness or increased side-effects. The novel PET radiotracer [18F]MC225 is a weak P-gp substrate that may show higher sensitivity to detect small changes in P-gp function than previously developed radiotracers. This study explores the sensitivity of [18F]MC225 to measure the dose-dependent effect of P-gp inhibitor tariquidar. Twenty-three rats were intravenously injected with different doses of tariquidar ranging from 0.75 to 12 mg/kg, 30-min before the dynamic [18F]MC225-PET acquisition with arterial sampling. Tissue and blood data were fitted to a 1-Tissue-Compartment-Model to obtain influx constant K1 and distribution volume VT, which allow the estimation of P-gp function. ANOVA and post-hoc analyses of K1 values showed significant differences between controls and groups with tariquidar doses >3 mg/kg; while applying VT the analyses showed significant differences between controls and groups with tariquidar doses >6 mg/kg. Dose-response curves were fitted using different models. The four-parameter logistic sigmoidal curve provided the best fit for K1 and VT data. Half-maximal inhibitory doses (ID50) were 2.23 mg/kg (95%CI: 1.669-2.783) and 2.93 mg/kg (95%CI: 1.135-3.651), calculated with K1 or VT values respectively. According to the dose-response fit, differences in [18F]MC225-K1 values could be detected at tariquidar doses ranging from 1.37 to 3.25 mg/kg. Our findings showed that small changes in the P-gp function, caused by low doses of tariquidar, could be detected by [18F]MC225-K1 values, which confirms the high sensitivity of the radiotracer. The results suggest that [18F]MC225 may allow the quantification of moderate P-gp impairments, which may allow the detection of P-gp dysfunctions at the early stages of a disease and potential transporter-mediated drug-drug interactions.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Tomografia por Emissão de Pósitrons/métodos , RatosRESUMO
BACKGROUND: [18F]MC225 is a radiotracer for imaging P-glycoprotein (P-gp) function at the blood-brain barrier. The P-gp function can be altered due to different factors, for instance, decreased P-gp function has been described in patients with Alzheimer's or Parkinson's Disease. The current applied radiosynthesis of [18F]MC225 involves 2 steps, including the distillation of the [18F] fluoroethylbromide intermediate. To develop a more robust synthetic procedure, it is of interest to produce the radiotracer via a 1-step synthesis. The present study describes a new synthetic approach to produce [18F]MC225 via direct 18F-fluorination. Moreover, we also provide the appropriate conditions for the automation of the synthesis. A mesylate precursor was synthesized via a multi-step synthetic route and used for the radiolabeling. The nucleophilic substitution of the mesylate group by [18F] Fluoride was automated in two different synthesis modules: IBA Synthera and Eckert and Ziegler PharmTracer (E&Z). RESULTS: The mesylate precursor was synthesized in 7 steps starting with 5-hydroxy-1-tetralone (commercially available) in practical yields. The stability of the precursor was improved via mesylate salt formation method. The radiolabeling was done by adding the mesylate precursor dissolved in DMF to the dried [18F]KF/K2.2.2 complex and heating at 140 °C for 30 min. Quality control by UPLC confirmed the production of [18F]MC225 with a molar activity (Am) higher than 100 GBq/micromole. The synthesis time in Synthera was 106 min and the product was obtained with a radiochemical purity higher than 95% and RCY of 6.5%, while the production in E&Z lasted 120 min and the product had a lower radiochemical purity (91%) and RCY (3.8%). CONCLUSIONS: [18F]MC225 was successfully produced via a 1-step reaction. The procedure is suitable for automation using commercially available synthesis modules. The automation of the radiosynthesis in the Synthera module allows the production of the [18F]MC225 by a reliable and simple method.
RESUMO
In longitudinal PET studies, animals are repeatedly anesthetized which may affect the repeatability of PET measurements. The aim of this study was to assess the effect of anesthesia on the P-gp function as well as the reproducibility of [18F]MC225 PET scans. Thus, dynamic PET scans with blood sampling were conducted in 13 Wistar rats. Seven animals were exposed to isoflurane anesthesia 1 week before the PET scan ("Anesthesia-exposed" PET). A second group of six animals was used to evaluate the reproducibility of measurements of P-gp function at the blood-brain barrier (BBB) with [18F]MC225. In this group, two PET scans were made with a 1 week interval ("Test" and "Retest" PET). Pharmacokinetic parameters were calculated using compartmental models and metabolite-corrected plasma as an input function. "Anesthesia-exposed" animals showed a 28% decrease in whole-brain volume of distribution (VT) (p < 0.001) compared to "Test", where the animals were not previously anesthetized. The VT at "Retest" also decreased (19%) compared to "Test" (p < 0.001). The k2 values in whole-brain were significantly increased by 18% in "Anesthesia-exposed" (p = 0.005) and by 15% in "Retest" (p = 0.008) compared to "Test". However, no significant differences were found in the influx rate constant K1, which is considered as the best parameter to measure the P-gp function. Moreover, Western Blot analysis did not find significant differences in the P-gp expression of animals not pre-exposed to anesthesia ("Test") or pre-exposed animals ("Retest"). To conclude, anesthesia may affect the brain distribution of [18F]MC225 but it does not affect the P-gp expression or function.
Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cintilografia , Compostos Radiofarmacêuticos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Masculino , Ratos Wistar , Reprodutibilidade dos Testes , Roedores/metabolismoRESUMO
The aim of this work is to test the in vivo behavior of a mucoadhesive vaginal emulsion resistant to the clearance of vaginal fluids using ciprofloxacin (CPX) as an anti-infective model of drug. CPX is a broad-spectrum antibiotic used in the treatment of sexual tissues infections, as intravenous injection in a dose of 20â¯mg every 12â¯h. In this study, CPX was incorporated in water in silicone (W/S) mucoadhesive emulsions and the in vivo residence time and the CPX in vivo absorption and distribution to the sexual organs was studied using the rat as animal model. W/S emulsion shows excellent in vitro bioadhesion having high resistance to the vaginal fluids clearance. The drug release profiles show a constant release of CPX during at least 6â¯h according to a zero-order kinetics. In vivo computerized PET/CT Image Analysis after intravaginal administration to rats indicates that W/S emulsions remain in the vaginal area for a long time and shows a good absorption of the radiotracers used as markers through the vaginal mucosa. Ciprofloxacin pharmacokinetic studies developed after the single intravaginal administration of W/S emulsion shows a good absorption and distribution of CPX on the uterus and ovarian tissue. A significant concentration of CPX in the sexual tissues was observed after 24â¯h of administration of W/S emulsion. Therefore, W/S emulsions have a good in vivo residence and drug release in the vaginal mucosae showing a great potential for the treatment of sexual tissues infections, as vaginal bioadhesive delivery systems of antinfectious drugs.
Assuntos
Antibacterianos/administração & dosagem , Ciprofloxacina/administração & dosagem , Silicones/química , Vagina/metabolismo , Adesividade , Administração Intravaginal , Animais , Antibacterianos/farmacocinética , Química Farmacêutica/métodos , Ciprofloxacina/farmacocinética , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Emulsões , Feminino , Mucosa/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Ratos Endogâmicos WKY , Distribuição Tecidual , Água/químicaRESUMO
Purpose: This work aimed at describing the time course of vitreous clearance through the use of positron emission tomography (PET) as a noninvasive tool for pharmacokinetic studies of intravitreal injection. Methods: The pharmacokinetic profile of intravitreal injections of molecules labeled with 18Fluorine (18F) was evaluated in adult Sprague Dawley rats by using a dedicated small-animal PET/computed tomography scanner. Different conditions were studied: three molecules radiolabeled with 18F (18F-FDG, 18F-NaF, and 18F-Choline), three volumes of intravitreal injections (7, 4, and 2 µL), and absence or presence of eye inflammation (uveitis). Results: Our results showed that there are significant pharmacokinetic differences among the radiolabeled molecules studied but not among the injected volumes. The presence or absence of uveitis was an important factor in vitreous clearance, since the elimination of the drug was clearly increased when this condition is present. Conclusions: Intravitreal pharmacokinetic studies based on the use of dedicated PET imaging can be of potential interest as noninvasive tools in ophthalmic drug development in small animals.
Assuntos
Fluordesoxiglucose F18/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Uveíte/metabolismo , Corpo Vítreo/metabolismo , Animais , Modelos Animais de Doenças , Fluordesoxiglucose F18/farmacocinética , Injeções Intravítreas , Masculino , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Uveíte/diagnóstico , Corpo Vítreo/patologiaRESUMO
Purpose: This work is aimed at describing the utility of positron emission tomography/computed tomography (PET/CT) as a noninvasive tool for pharmacokinetic studies of biopermanence of topical ocular formulations. Methods: The corneal biopermanence of a topical ophthalmic formulation containing gellan gum and kappa carragenan (0.82% wt/vol) labeled with 18Fluorine (18F) radiotracers (18F-FDG and 18F-NaF) was evaluated by using a dedicated small-animal PET/CT, and compared with the biopermanence of an aqueous solution labeled with the same compounds. Regions of interest (ROIs) were manually drawn on the reconstructed PET images for quantifying the radioactivity concentration in the eye. The biopermanence of the formulations was determined by measuring the radioactivity concentration at different times after topical application. Additionally, cellular and ex vivo safety assays were performed to assess the safety of the performed procedures. Results: Differences were observed in the ocular pharmacokinetics of the two formulations. After 1.5 hours of contact, 90% of the hydrogel remained in the ocular surface, while only 69% of the control solution remained. Furthermore, it was observed that flickering had a very important role in the approach of the trial. The application of 18F-FDG in the eye was neither irritating nor cytotoxic for human corneal epithelial cells. Conclusions: The use of small-animal PET and 18F radiotracers in ocular pharmacokinetics of ophthalmic formulations is feasible and could be a safe method for future ocular pharmacokinetic studies in humans.
Assuntos
Córnea/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacocinética , Soluções Oftálmicas/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Carragenina/farmacocinética , Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fluordesoxiglucose F18/administração & dosagem , Fluordesoxiglucose F18/toxicidade , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Masculino , Polissacarídeos Bacterianos/farmacocinética , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/toxicidade , Ratos , Ratos Sprague-DawleyRESUMO
INTRODUCTION: Current guidelines for brain PET imaging advice against the injection of diazepam prior to brain FDG-PET examination in order to avoid possible interactions of benzodiazepines with the radiotracer uptake. Nevertheless, many patients undergoing PET studies are likely to be under chronic treatment with benzodiazepines, for example due to the use of different medications such as sleeping pills. Animal studies may provide an extensive and accurate estimation of the effect of benzodiazepines on brain metabolism in a well-defined and controlled framework. AIM: This study aims at evaluating the impact of benzodiazepines on brain FDG uptake after single-dose administration and chronic treatment in rats. METHODS: Twelve Sprague-Dawley healthy rats were randomly divided into two groups, one treated with diazepam and the other used as control group. Both groups underwent PET/CT examinations after single-dose and chronic administration of diazepam (treated) or saline (controls) during twenty-eight days. Different atlas-based quantification methods were used to explore differences on the total uptake and uptake patterns of FDG between both groups. RESULTS: Our analysis revealed a significant reduction of global FDG uptake after acute (-16.2%) and chronic (-23.2%) administration of diazepam. Moreover, a strong trend pointing to differences between acute and chronic administrations (p<0.08) was also observed. Uptake levels returned to normal after interrupting the administration of diazepam. On the other hand, patterns of FDG uptake were not affected by the administration of diazepam. CONCLUSIONS: The administration of diazepam causes a progressive decrease of the FDG global uptake in the rat brain, but it does not change local patterns within the brain. Under these conditions, visual assessment and quantification methods based on regional differences such as asymmetry indexes or SPM statistical analysis would still be valid when administrating this medication.