Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(1): e1009784, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081156

RESUMO

African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Endossomos/virologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas Virais/metabolismo , Vírus da Febre Suína Africana/metabolismo , Animais , Chlorocebus aethiops , Endossomos/metabolismo , Células HEK293 , Humanos , Suínos , Células Vero
2.
Nature ; 533(7601): 100-4, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147028

RESUMO

Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.


Assuntos
Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/fisiopatologia , Linfócitos T/imunologia , Antígeno CTLA-4/metabolismo , Feminino , Citometria de Fluxo , Guiné/epidemiologia , Doença pelo Vírus Ebola/mortalidade , Humanos , Mediadores da Inflamação/imunologia , Estudos Longitudinais , Ativação Linfocitária , Masculino , Alta do Paciente , Receptor de Morte Celular Programada 1/metabolismo , Sobreviventes , Linfócitos T/metabolismo , Carga Viral
3.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408808

RESUMO

Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.


Assuntos
Tratamento Farmacológico da COVID-19 , Mebendazol , Animais , Antivirais/farmacologia , Mamíferos , Mebendazol/farmacologia , Microtúbulos , SARS-CoV-2 , Tubulina (Proteína)
4.
PLoS Comput Biol ; 16(11): e1008375, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137116

RESUMO

Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola virus modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola virus infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.


Assuntos
Ebolavirus/fisiologia , Modelos Biológicos , Replicação Viral/fisiologia , Animais , Teorema de Bayes , Chlorocebus aethiops , Biologia Computacional , Simulação por Computador , Ebolavirus/genética , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Técnicas In Vitro , Cinética , Cadeias de Markov , Método de Monte Carlo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero , Carga Viral/fisiologia
5.
Nature ; 524(7563): 97-101, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26083749

RESUMO

West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Ebolavirus/genética , Evolução Molecular , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Filogenia , Análise Espaço-Temporal , Substituição de Aminoácidos/genética , Ebolavirus/isolamento & purificação , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Libéria/epidemiologia , Masculino , Mali/epidemiologia , Dados de Sequência Molecular , Serra Leoa/epidemiologia
6.
J Infect Dis ; 220(2): 195-202, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30788508

RESUMO

BACKGROUND: In 2015, the laboratory at the Ebola treatment center in Coyah, Guinea, confirmed Ebola virus disease (EVD) in 286 patients. The cycle threshold (Ct) of an Ebola virus-specific reverse transcription-polymerase chain reaction assay and 13 blood chemistry parameters were measured on admission and during hospitalization. Favipiravir treatment was offered to patients with EVD on a compassionate-use basis. METHODS: To reduce biases in the raw field data, we carefully selected 163 of 286 patients with EVD for a retrospective study to assess associations between potential risk factors, alterations in blood chemistry findings, favipiravir treatment, and outcome. RESULTS: The case-fatality rate in favipiravir-treated patients was lower than in untreated patients (42.5% [31 of 73] vs 57.8% [52 of 90]; P = .053 by univariate analysis). In multivariate regression analysis, a higher Ct and a younger age were associated with survival (P < .001), while favipiravir treatment showed no statistically significant effect (P = .11). However, Kaplan-Meier analysis indicated a longer survival time in the favipiravir-treated group (P = .015). The study also showed characteristic changes in blood chemistry findings in patients who died, compared with survivors. CONCLUSIONS: Consistent with the JIKI trial, this retrospective study revealed a trend toward improved survival in favipiravir- treated patients; however, the effect of treatment was not statistically significant, except for its influence on survival time.


Assuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Pirazinas/uso terapêutico , Adolescente , Adulto , Criança , Pré-Escolar , Ensaios de Uso Compassivo/métodos , Feminino , Guiné , Doença pelo Vírus Ebola/virologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Carga Viral/efeitos dos fármacos , Adulto Jovem
7.
J Proteome Res ; 15(12): 4290-4303, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27786485

RESUMO

Ebola virus (EBOV) infection results in severe disease and in some cases lethal hemorrhagic fever. The infection is directed by seven viral genes that encode nine viral proteins. By definition, viruses are obligate intracellular parasites and require aspects of host cell biology in order to replicate their genetic material, assemble new virus particles, and subvert host cell antiviral responses. Currently licensed antivirals are targeted against viral proteins to inhibit their function. However, experience with treating HIV and influenza virus demonstrates that resistant viruses are soon selected. An emerging area in virology is to transiently target host cell proteins that play critical proviral roles in virus biology, especially for acute infections. This has the advantage that the protein being targeted is evolutionary removed from the genome of the virus. Proteomics can aid in discovery biology and identify cellular proteins that may be utilized by the virus to facilitate infection. This work focused on defining the interactome of the EBOV nucleoprotein and identified that cellular chaperones, including HSP70, associate with this protein to promote stability. Utilization of a mini-genome replication system based on a recent Makona isolate demonstrated that disrupting the stability of NP had an adverse effect on viral RNA synthesis.


Assuntos
Ebolavirus/fisiologia , Chaperonas Moleculares/metabolismo , Nucleoproteínas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Terapia de Alvo Molecular/métodos , Nucleoproteínas/química , Estabilidade Proteica , Provírus , RNA Viral/biossíntese , Proteínas Virais/metabolismo , Replicação Viral
8.
J Proteome Res ; 13(11): 5120-35, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25158218

RESUMO

Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.


Assuntos
Ebolavirus/patogenicidade , Mapeamento de Interação de Proteínas/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Ebolavirus/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293/efeitos dos fármacos , Células HEK293/virologia , Interações Hospedeiro-Patógeno , Humanos , Espectrometria de Massas/métodos , Ouabaína/farmacologia , Proteômica/métodos , Reprodutibilidade dos Testes , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Proteínas Virais/genética
9.
Viruses ; 16(3)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543715

RESUMO

African swine fever virus (ASFV) belongs to the family of Asfarviridae, part of the group of nucleocytoplasmic large DNA viruses (NCLDV). Little is known about the internalization of ASFV in the host cell and the fusion membrane events that take place at early stages of the infection. Poxviruses, also members of the NCLDV and represented by vaccinia virus (VACV), are large, enveloped, double-stranded DNA viruses. Poxviruses were considered unique in having an elaborate entry-fusion complex (EFC) composed of 11 highly conserved proteins integrated into the membrane of mature virions. Recent advances in methodological techniques have again revealed several connections between VACV EFC proteins. In this study, we explored the possibility of an analogous ASFV EFC by identifying ten candidate proteins exhibiting structural similarities with VACV EFC proteins. This could reveal key functions of these ASFV proteins, drawing attention to shared features between the two virus families, suggesting the potential existence of an ASFV entry-fusion complex.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Poxviridae , Vacínia , Animais , Suínos , Vaccinia virus/genética , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Homologia de Sequência
10.
Front Cell Infect Microbiol ; 13: 1163569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125905

RESUMO

The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Complexos Endossomais de Distribuição Requeridos para Transporte , Suínos , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Vírus da Febre Suína Africana/genética , Proteínas de Ligação ao Cálcio/metabolismo , Endossomos/metabolismo , Endocitose
11.
Viruses ; 15(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37243184

RESUMO

African swine fever virus (ASFV) encodes more than 150 proteins, most of them of unknown function. We used a high-throughput proteomic analysis to elucidate the interactome of four ASFV proteins, which potentially mediate a critical step of the infection cycle, the fusion and endosomal exit of the virions. Using affinity purification and mass spectrometry, we were able to identify potential interacting partners for those ASFV proteins P34, E199L, MGF360-15R and E248R. Representative molecular pathways for these proteins were intracellular and Golgi vesicle transport, endoplasmic reticulum organization, lipid biosynthesis, and cholesterol metabolism. Rab geranyl geranylation emerged as a significant hit, and also Rab proteins, which are crucial regulators of the endocytic pathway and interactors of both p34 and E199L. Rab proteins co-ordinate a tight regulation of the endocytic pathway that is necessary for ASFV infection. Moreover, several interactors were proteins involved in the molecular exchange at ER membrane contacts. These ASFV fusion proteins shared interacting partners, suggesting potential common functions. Membrane trafficking and lipid metabolism were important categories, as we found significant interactions with several enzymes of the lipid metabolism. These targets were confirmed using specific inhibitors with antiviral effect in cell lines and macrophages.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Proteínas Virais de Fusão/metabolismo , Proteômica , Linhagem Celular
12.
Sci Rep ; 13(1): 11310, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443182

RESUMO

Lloviu cuevavirus (LLOV) was the first identified member of Filoviridae family outside the Ebola and Marburgvirus genera. A massive die-off of Schreibers's bats (Miniopterus schreibersii) in the Iberian Peninsula in 2002 led to its initial discovery. Recent studies with recombinant and wild-type LLOV isolates confirmed the zoonotic nature of the virus in vitro. We examined bat samples from Italy for the presence of LLOV in an area outside of the currently known distribution range of the virus. We detected one positive sample from 2020, sequenced the complete coding region of the viral genome and established an infectious isolate of the virus. In addition, we performed the first comprehensive evolutionary analysis of the virus, using the Spanish, Hungarian and the Italian sequences. The most important achievement of this study is the establishment of an additional infectious LLOV isolate from a bat sample using the SuBK12-08 cells, demonstrating that this cell line is highly susceptible to LLOV infection and confirming the previous observation that these bats are effective hosts of the virus in nature. This result further strengthens the role of bats as the natural hosts for zoonotic filoviruses.


Assuntos
Quirópteros , Filoviridae , Marburgvirus , Animais , Filoviridae/genética , Linhagem Celular , Itália , Filogenia
13.
Viruses ; 13(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204411

RESUMO

African swine fever virus (ASFV) is an acute and persistent swine virus with a high economic burden that encodes multiple genes to evade host immune response. In this work, we have revealed that early viral protein UBCv1, the only known conjugating enzyme encoded by a virus, modulates innate immune and inflammatory signaling. Transient overexpression of UBCv1 impaired activation of NF-κB and AP-1 transcription factors induced by several agonists of these pathways. In contrast, activation of IRF3 and ISRE signaling upon stimulation with TRIFΔRIP, cGAS/STING or RIG-I-CARD remained unaltered. Experiments aimed at mapping UBCv1 inhibitory activity indicated that this viral protein acts upstream or at the level step of IKKß. In agreement with this, UBCv1 was able to block p65 nuclear translocation upon cytokine stimulation, a key event in NF-ĸB signaling. Additionally, A549 stably transduced for UBCv1 showed a significant decrease in the levels of NF-ĸB dependent genes. Interestingly, despite the well-defined capacity of UBCv1 to conjugate ubiquitin chains, a mutant disabled for ubiquitylation activity retained similar immunomodulatory activity as the wild-type enzyme, suggesting that the two functions are segregated. Altogether these data suggest that ASFV UBCv1 manipulates the innate immune response targeting the NF-κB and AP-1 pathways and opens new questions about the multifunctionality of this enzyme.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Imunidade Inata , Imunomodulação , NF-kappa B/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/imunologia , Células A549 , Vírus da Febre Suína Africana/imunologia , Animais , Células HEK293 , Humanos , Interferon Tipo I/imunologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/imunologia , Suínos , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
14.
Antiviral Res ; 186: 105011, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428961

RESUMO

Despite the efforts to develop new treatments against Ebola virus (EBOV) there is currently no antiviral drug licensed to treat patients with Ebola virus disease (EVD). Therefore, there is still an urgent need to find new drugs to fight against EBOV. In order to do this, a virtual screening was done on the druggable interaction between the EBOV glycoprotein (GP) and the host receptor NPC1 with a subsequent selection of compounds for further validation. This screening led to the identification of new small organic molecules with potent inhibitory action against EBOV infection using lentiviral EBOV-GP-pseudotype viruses. Moreover, some of these compounds have shown their ability to interfere with the intracellular cholesterol transport receptor NPC1 using an ELISA-based assay. These preliminary results pave the way to hit to lead optimization programs that lead to successful candidates.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas/métodos , Proteína C1 de Niemann-Pick/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Chlorocebus aethiops , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Células Vero
15.
Genome Med ; 13(1): 5, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430949

RESUMO

BACKGROUND: Ebola virus disease (EVD) is an often-fatal infection where the effectiveness of medical countermeasures is uncertain. During the West African outbreak (2013-2016), several patients were treated with different types of anti-viral therapies including monoclonal antibody-based cocktails that had the potential to neutralise Ebola virus (EBOV). However, at the time, the efficacy of these therapies was uncertain. Given the scale of the outbreak, several clinical phenotypes came to the forefront including the ability of the same virus to cause recrudescence in the same patient-perhaps through persisting in immune privileged sites. Several key questions remained including establishing if monoclonal antibody therapy was effective in humans with severe EVD, whether virus escape mutants were selected during treatment, and what is the potential mechanism(s) of persistence. This was made possible through longitudinal samples taken from a UK patient with EVD. METHODS: Several different sample types, plasma and cerebrospinal fluid, were collected and sequenced using Illumina-based RNAseq. Sequence reads were mapped both to EBOV and the human genome and differential gene expression analysis used to identify changes in the abundance of gene transcripts as infection progressed. Digital Cell Quantitation analysis was used to predict the immune phenotype in samples derived from blood. RESULTS: The findings were compared to equivalent data from West African patients. The study found that both virus and host markers were predictive of a fatal outcome. This suggested that the extensive supportive care, and most likely the application of the medical countermeasure ZMab (a monoclonal antibody cocktail), contributed to survival of the UK patient. The switch from progression to a 'fatal' outcome to a 'survival' outcome could be seen in both the viral and host markers. The UK patient also suffered a recrudescence infection 10 months after the initial infection. Analysis of the sequencing data indicated that the virus entered a period of reduced or minimal replication, rather than other potential mechanisms of persistence-such as defective interfering genomes. CONCLUSIONS: The data showed that comprehensive supportive care and the application of medical countermeasures are worth pursuing despite an initial unfavourable prognosis.


Assuntos
Biomarcadores/metabolismo , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/mortalidade , Doença pelo Vírus Ebola/virologia , Contramedidas Médicas , Sobreviventes , Sequência de Aminoácidos , Sequência Consenso , Ebolavirus/genética , Genética Populacional , Genoma Humano , Genoma Viral , Guiné , Humanos , Interferons/genética , Interferons/metabolismo , Mutação/genética , Fenótipo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Carga Viral , Replicação Viral/genética
16.
Antiviral Res ; 194: 105167, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450201

RESUMO

Niemann-Pick type C1 (NPC1) receptor is an endosomal membrane protein that regulates intracellular cholesterol traffic. This protein has been shown to play an important role for several viruses. It has been reported that SARS-CoV-2 enters the cell through plasma membrane fusion and/or endosomal entry upon availability of proteases. However, the whole process is not fully understood yet and additional viral/host factors might be required for viral fusion and subsequent viral replication. Here, we report a novel interaction between the SARS-CoV-2 nucleoprotein (N) and the cholesterol transporter NPC1. Furthermore, we have found that some compounds reported to interact with NPC1, carbazole SC816 and sulfides SC198 and SC073, were able to reduce SARS-CoV-2 viral infection with a good selectivity index in human cell infection models. These findings suggest the importance of NPC1 for SARS-CoV-2 viral infection and a new possible potential therapeutic target to fight against COVID-19.


Assuntos
Transporte Biológico , Tratamento Farmacológico da COVID-19 , Endossomos/virologia , Proteína C1 de Niemann-Pick/análise , SARS-CoV-2/fisiologia , Animais , Carbazóis/farmacologia , Chlorocebus aethiops , Endossomos/química , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fusão de Membrana , Células Vero , Replicação Viral
17.
mBio ; 12(4): e0097221, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34225493

RESUMO

Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein that inhibits interferon (IFN) gene expression and counteracts the IFN-mediated antiviral response, preventing nuclear import of signal transducer and activator of transcription 1 (STAT1). Proteomic studies to identify additional EBOV VP24 partners have pointed to the nuclear membrane component emerin as a potential element of the VP24 cellular interactome. Here, we have further studied this interaction and its impact on cell biology. We demonstrate that VP24 interacts with emerin but also with other components of the inner nuclear membrane, such as lamin A/C and lamin B. We also show that VP24 diminishes the interaction between emerin and lamin A/C and compromises the integrity of the nuclear membrane. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, expression of VP24 also promoted the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), a common interactor of lamin A/C and emerin, leading to repression of the BAF-regulated CSF1 gene. Importantly, we found that EBOV infection results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. In summary, here we demonstrate that VP24 acts at the nuclear membrane, causing morphological and functional changes in cells that recapitulate several of the hallmarks of laminopathy diseases. IMPORTANCE The Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein with multiple functions. Proteomic studies have identified the cellular nuclear membrane component emerin as a potential VP24 interactor. Here, we demonstrate that VP24 not only interacts with emerin but also with lamin A/C and lamin B, prompting nuclear membrane disruption. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, VP24 also promotes the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), leading to repression of the BAF-regulated CSF1 gene. Finally, we show that EBOV infection also results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. These results reveal novel activities of EBOV VP24 protein, resulting in a cell phenotype similar to that of most laminopathies, with potential impact on EBOV replication.


Assuntos
Ebolavirus/patogenicidade , Laminopatias/virologia , Laminas/metabolismo , Membrana Nuclear/patologia , Proteínas Virais/genética , Células A549 , Transporte Ativo do Núcleo Celular , Núcleo Celular/patologia , Núcleo Celular/virologia , Ebolavirus/química , Ebolavirus/genética , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/virologia , Humanos , Laminas/classificação , Proteínas de Membrana/metabolismo , Membrana Nuclear/virologia , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Virais/metabolismo , Replicação Viral
18.
Nat Commun ; 12(1): 1260, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627662

RESUMO

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Pulmão/patologia , Pulmão/virologia , Animais , Modelos Animais de Doenças , Feminino , Imunidade Celular/fisiologia , Interferon gama/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Pandemias , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-32373552

RESUMO

As the ongoing outbreak in the Democratic Republic of Congo illustrates, Ebola virus disease continues to pose a significant risk to humankind and this necessitates the continued development of therapeutic options. One option that warrants evaluation is that of defective genomes; these can potentially parasitize resources from the wild-type virus and may even be packaged for repeated co-infection cycles. Deletion and copy-back defective genomes have been identified and reported in the literature. As a crude, mixed preparation these were found to have limiting effects on cytopathology. Here we have used synthetic virology to clone and manufacture two deletion defective genomes. These genomes were tested with Ebola virus using in vitro cell culture and shown to inhibit viral replication; however, and against expectations, the defective genomes were not released in biologically significant numbers. We propose that EBOV might have yet unknown mechanisms to prevent parasitisation by defective interfering particles beyond the known mechanism that prevents sequential infection of the same cell. Understanding this mechanism would be necessary in any development of a defective interfering particle-based therapy.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Congo , Ebolavirus/genética , Genoma Viral , Humanos , Replicação Viral
20.
Viruses ; 12(10)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066701

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Sequencing the viral genome as the outbreak progresses is important, particularly in the identification of emerging isolates with different pathogenic potential and to identify whether nucleotide changes in the genome will impair clinical diagnostic tools such as real-time PCR assays. Although single nucleotide polymorphisms and point mutations occur during the replication of coronaviruses, one of the biggest drivers in genetic change is recombination. This can manifest itself in insertions and/or deletions in the viral genome. Therefore, sequencing strategies that underpin molecular epidemiology and inform virus biology in patients should take these factors into account. A long amplicon/read length-based RT-PCR sequencing approach focused on the Oxford Nanopore MinION/GridION platforms was developed to identify and sequence the SARS-CoV-2 genome in samples from patients with or suspected of COVID-19. The protocol, termed Rapid Sequencing Long Amplicons (RSLAs) used random primers to generate cDNA from RNA purified from a sample from a patient, followed by single or multiplex PCRs to generate longer amplicons of the viral genome. The base protocol was used to identify SARS-CoV-2 in a variety of clinical samples and proved sensitive in identifying viral RNA in samples from patients that had been declared negative using other nucleic acid-based assays (false negative). Sequencing the amplicons revealed that a number of patients had a proportion of viral genomes with deletions.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , DNA Complementar/análise , DNA Complementar/genética , DNA Viral/análise , DNA Viral/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Epidemiologia Molecular , Reação em Cadeia da Polimerase Multiplex , Pandemias , Pneumonia Viral/diagnóstico , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA