Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
ILAR J ; 49(2): 220-55, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18323583

RESUMO

Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents-bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.


Assuntos
Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Modelos Animais de Doenças , Animais , Doenças Transmissíveis/patologia , Humanos , Macaca
3.
Viral Immunol ; 25(2): 141-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22486305

RESUMO

Human papillomavirus (HPV) is associated with premalignant lesions such as high-grade cervical intraepithelial neoplasia (CIN-III) with potential progression to cervical carcinoma. There are now preventive vaccines against HPV. However, no effective therapeutic vaccine or immunological treatment exists for individuals already infected or for the 470,000 women that develop high-grade dysplasia, carcinoma in situ, and cervical cancer each year. More than half of these women die from cervical cancer. Relative non-immunogenicity of HPV infection is one of the main reasons for the difficulty in designing a comprehensive therapeutic vaccine against HPV-induced premalignant lesions and cervical carcinoma. HPV E6 and E7 proteins, the major HPV oncogenes, are highly immunogenic but fail to induce cross-reactive and protective immune responses against heterologous strains. We designed and synthesized a therapeutic peptide vaccine comprised of multivalent peptide mixtures called hypervariable epitope constructs (HECs) that represent the major epitope variants of the oncogenic E7 structural protein, and assessed their immunogenicity and in vivo efficacy in mice. Our results show that this peptide vaccine can induce strong, HPV-specific, T-helper cell and CTL responses. More significantly, we have demonstrated that the vaccine is efficacious as a therapeutic agent in a mouse HPV tumor model. Therefore, the HPV HEC vaccine approach described herein can potentially prevent progression of HPV-associated premalignant lesions, and may also be therapeutic against tumors associated with HPV.


Assuntos
Carcinoma/terapia , Imunoterapia/métodos , Papillomaviridae/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/terapia , Animais , Antígenos Virais/administração & dosagem , Antígenos Virais/imunologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/administração & dosagem , Infecções por Papillomavirus/complicações , Vacinas contra Papillomavirus/administração & dosagem , Linfócitos T/imunologia , Resultado do Tratamento , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
4.
Microbes Infect ; 14(9): 667-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22580093

RESUMO

The University of California, Davis hosted a symposium on innate immunity in January 2012. Professors Bruce Beutler, Jules Hoffmann, Luke O'Neill and Pamela Ronald discussed their research on mechanisms that multicellular organisms use to recognize microbes.


Assuntos
Evolução Molecular , Imunidade Inata , Animais , California , Humanos , Modelos Animais , Modelos Biológicos , Biologia Molecular
5.
Viral Immunol ; 23(5): 497-508, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20883164

RESUMO

Immune responses against hepatitis C virus (HCV) have been studied by numerous groups. However, details concerning the production of antibodies to antigenically variable epitopes remain to be elucidated. Since the sequences of the variable regions of several HCV proteins are different among the virus strains infecting patients, we decided to design peptide combinations that represent the theoretical maximum antigenic variation of each epitope to be used as capture antigens. We prepared six peptide mixtures (hypervariable epitope constructs; HECs) representing six different epitopes from structural and non-structural proteins of HCV from genotypes 1-6. Plasma from 300 HCV patients was tested to determine if their antibodies recognize the synthetic constructs. All the patients were chronically infected with diverse HCV genotypes and did not receive antiviral treatment. Antibodies to one or more of the HECs were detected in all of the HCV-infected individuals. Immunogenicity of the HCV HECs was also evaluated in outbred and inbred mice. Strong HEC-specific antibodies were produced, and cellular responses were also induced that were Th-1 rather than Th-2. Our results show that HCV HECs are both antigens that can be used to detect the broad cross-reactivity of antibodies from HCV-infected patients, and strong immunogens that can induce antigen-specific humoral and cellular immune responses in mice.


Assuntos
Antígenos Virais/imunologia , Hepacivirus/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Antivirais/sangue , Variação Antigênica , Antígenos Virais/genética , Hepacivirus/genética , Hepatite C Crônica/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
8.
J Virol ; 78(4): 2121-30, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747577

RESUMO

Newborn rhesus macaques were infected with two chimeric simian-human immunodeficiency virus (SHIV) strains which contain unique human immunodeficiency virus type 1 (HIV-1) env genes and exhibit distinct phenotypes. Infection with either the CCR5-specific SHIV(SF162P3) or the CXCR4-utilizing SHIV(SF33A) resulted in clinical manifestations consistent with simian AIDS. Most prominent in this study was the detection of severe thymic involution in all SHIV(SF33A)-infected infants, which is very similar to HIV-1-induced thymic dysfunction in children who exhibit a rapid pattern of disease progression. In contrast, SHIV(SF162P3) induced only a minor disruption in thymic morphology. Consistent with the distribution of the coreceptors CXCR4 and CCR5 within the thymus, the expression of SHIV(SF162P3) was restricted to the thymic medulla, whereas SHIV(SF33A) was preferentially detected in the cortex. This dichotomy of tissue tropism is similar to the differential tropism of HIV-1 isolates observed in the reconstituted human thymus in SCID-hu mice. Accordingly, our results show that the SHIV-monkey model can be used for the molecular dissection of cell and tissue tropisms controlled by the HIV-1 env gene and for the analysis of mechanisms of viral immunopathogenesis in AIDS. Furthermore, these findings could help explain the rapid progression of disease observed in some HIV-1-infected children.


Assuntos
HIV-1/patogenicidade , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Vírus da Imunodeficiência Símia/patogenicidade , Timo/patologia , Animais , Animais Recém-Nascidos , HIV-1/genética , HIV-1/metabolismo , Macaca mulatta , Recombinação Genética , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo , Timo/virologia
9.
J Virol ; 76(22): 11365-78, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12388697

RESUMO

Attenuated molecular clones of simian immunodeficiency virus (SIVmac) are important tools for studying the correlates of protective immunity to lentivirus infection in nonhuman primates. The most highly attenuated SIVmac mutants fail to induce disease but also fail to induce immune responses capable of protecting macaques from challenge with pathogenic virus. We recently described a novel attenuated virus, SIVmac-M4, containing multiple mutations in the transmembrane protein (TM) intracytoplasmic domain. This domain has been implicated in viral assembly, infectivity, and cytopathogenicity. Whereas parental SIVmac239-Nef(+) induced persistent viremia and simian AIDS in rhesus macaques, SIVmac-M4 induced transient viremia in juvenile and neonatal macaques, with no disease for at least 1 year postinfection. In this vaccine study, 8 macaques that were infected as juveniles (n = 4) or neonates (n = 4) with SIVmac-M4 were challenged with pathogenic SIVmac251 administered through oral mucosa. At 1 year postchallenge, six of the eight macaques had low to undetectable plasma viremia levels. Assays of cell-mediated immune responses to SIVmac Gag, Pol, Env, and Nef revealed that all animals developed strong CD8(+) T-cell responses to Gag after challenge but not before. Unvaccinated control animals challenged with SIVmac251 developed persistent viremia, had significantly weaker SIV-specific T-cell responses, and developed AIDS-related symptoms. These findings demonstrate that SIVmac-M4, which contains a full-length Nef coding region and multiple point mutations in the TM, can provide substantial protection from mucosal challenge with pathogenic SIVmac251.


Assuntos
Produtos do Gene env/imunologia , Mutação Puntual , Proteínas Oncogênicas de Retroviridae/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas Virais de Fusão/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Antivirais , Linfócitos T CD8-Positivos/imunologia , Produtos do Gene env/genética , Macaca mulatta , Mucosa Bucal/virologia , Testes de Neutralização , Proteínas Oncogênicas de Retroviridae/genética , Vírus da Imunodeficiência Símia/genética , Vacinação , Vacinas Atenuadas/imunologia , Proteínas Virais de Fusão/genética , Carga Viral
10.
J Virol ; 76(15): 7661-71, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12097580

RESUMO

Human cytomegalovirus (HCMV) possesses low pathogenic potential in an immunocompetent host. In the immunosuppressed host, however, a wide spectrum of infection outcomes, ranging from asymptomatic to life threatening, can follow either primary or nonprimary infection. The variability in the manifestations of HCMV infection in immunosuppressed individuals implies that there is a threshold of host antiviral immunity that can effectively limit disease potential. We used a nonhuman primate model of CMV infection to assess the relationship between CMV disease and the levels of developing anti-CMV immunity. Naive rhesus macaques were inoculated with rhesus cytomegalovirus (RhCMV) followed 2 or 11 weeks later by inoculation with pathogenic simian immunodeficiency virus SIVmac239. Two of four monkeys inoculated with SIV at 2 weeks after inoculation with RhCMV died within 11 weeks with simian AIDS (SAIDS), including activated RhCMV infection. Neither animal had detectable anti-SIV antibodies. The other two animals died 17 and 27 weeks after SIV inoculation with either SAIDS or early lymphoid depletion, although no histological evidence of activated RhCMV was observed. Both had weak anti-SIV antibody titers. RhCMV antibody responses for this group of monkeys were significantly below those of control animals inoculated with only RhCMV. In addition, all animals of this group had persistent RhCMV DNA in plasma and high copy numbers of RhCMV in tissues. In contrast, animals that were inoculated with SIV at 11 weeks after RhCMV infection rarely exhibited RhCMV DNA in plasma, had low copy numbers of RhCMV DNA in most tissues, and did not develop early onset of SAIDS or activated RhCMV. SIV antibody titers were mostly robust and sustained in these monkeys. SIV inoculation blunted further development of RhCMV humoral responses, unlike the normal pattern of development in control monkeys following RhCMV inoculation. Anti-RhCMV immunoglobulin G levels and avidity were slightly below control values, but levels maintained were higher than those observed following SIV infection at 2 weeks after RhCMV inoculation. These findings demonstrate that SIV produces long-lasting insults to the humoral immune system beginning very early after SIV infection. The results also indicate that anti-RhCMV immune development at 11 weeks after infection was sufficient to protect the host from acute RhCMV sequelae following SIV infection, in contrast to the lack of protection afforded by only 2 weeks of immune response to RhCMV. As previously observed, monkeys that were not able to mount a significant immune response to SIV were the most susceptible to SAIDS, including activated RhCMV infection. Rapid development of SAIDS in animals inoculated with SIV 2 weeks after RhCMV inoculation suggests that RhCMV can augment SIV pathogenesis, particularly during primary infection by both viruses.


Assuntos
Infecções por Citomegalovirus/complicações , Citomegalovirus/patogenicidade , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Anticorpos Antivirais/sangue , Infecções por Citomegalovirus/fisiopatologia , Infecções por Citomegalovirus/virologia , DNA Viral/sangue , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA