Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004146

RESUMO

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Assuntos
Hipocampo/citologia , Neocórtex/citologia , Transcriptoma/genética , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007418

RESUMO

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Assuntos
Encéfalo/metabolismo , Técnicas de Inativação de Genes/métodos , Genes Reporter , Animais , Encéfalo/citologia , Cálcio/metabolismo , Linhagem Celular , Hibridização in Situ Fluorescente , Luz , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neurônios/metabolismo , Optogenética , RNA não Traduzido/genética , Transgenes/genética
3.
Nature ; 573(7772): 61-68, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435019

RESUMO

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Assuntos
Astrócitos/classificação , Evolução Biológica , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios/classificação , Adolescente , Adulto , Idoso , Animais , Astrócitos/citologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Inibição Neural , Neurônios/citologia , Análise de Componente Principal , RNA-Seq , Análise de Célula Única , Especificidade da Espécie , Transcriptoma/genética , Adulto Jovem
4.
Nature ; 563(7729): 72-78, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30382198

RESUMO

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.


Assuntos
Perfilação da Expressão Gênica , Neocórtex/citologia , Neocórtex/metabolismo , Animais , Biomarcadores/análise , Feminino , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Córtex Motor/metabolismo , Neocórtex/anatomia & histologia , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única , Córtex Visual/anatomia & histologia , Córtex Visual/citologia , Córtex Visual/metabolismo
5.
PLoS Genet ; 9(7): e1003615, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874218

RESUMO

Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY) have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM) shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.


Assuntos
Ritmo Circadiano/genética , Criptocromos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Fotofobia/genética , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Mutação , Neurônios/metabolismo , Fótons , Fotoperíodo , Células Fotorreceptoras de Invertebrados/fisiologia
6.
Proc Natl Acad Sci U S A ; 109(19): 7499-504, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22532663

RESUMO

We describe a method for light-inducible and tissue-selective cell ablation using a genetically encoded photosensitizer, miniSOG (mini singlet oxygen generator). miniSOG is a newly engineered fluorescent protein of 106 amino acids that generates singlet oxygen in quantum yield upon blue-light illumination. We transgenically expressed mitochondrially targeted miniSOG (mito-miniSOG) in Caenorhabditis elegans neurons. Upon blue-light illumination, mito-miniSOG causes rapid and effective death of neurons in a cell-autonomous manner without detectable damages to surrounding tissues. Neuronal death induced by mito-miniSOG appears to be independent of the caspase CED-3, but the clearance of the damaged cells partially depends on the phagocytic receptor CED-1, a homolog of human CD91. We show that neurons can be killed at different developmental stages. We further use this method to investigate the role of the premotor interneurons in regulating the convulsive behavior caused by a gain-of-function mutation in the neuronal acetylcholine receptor acr-2. Our findings support an instructive role for the interneuron AVB in controlling motor neuron activity and reveal an inhibitory effect of the backward premotor interneurons on the forward interneurons. In summary, the simple inducible cell ablation method reported here allows temporal and spatial control and will prove to be a useful tool in studying the function of specific cells within complex cellular contexts.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Flavoproteínas/metabolismo , Proteínas Luminescentes/metabolismo , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caspases/genética , Caspases/metabolismo , Morte Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Flavoproteínas/genética , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/efeitos da radiação , Luz , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios Motores/efeitos da radiação , Neurônios/citologia , Neurônios/efeitos da radiação , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Oxigênio Singlete/metabolismo , Fatores de Tempo
7.
Nat Commun ; 12(1): 3545, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112806

RESUMO

Multiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, we present a method called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed smFISH. Here, we show that SSAM detects regions occupied by known cell types that were previously missed and discovers new cell types.


Assuntos
Encéfalo/citologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Simulação por Computador , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/diagnóstico por imagem , Córtex Somatossensorial/citologia , Córtex Somatossensorial/diagnóstico por imagem , Transcriptoma/genética , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagem
8.
Neuron ; 109(3): 545-559.e8, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290731

RESUMO

The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.


Assuntos
Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neurônios/fisiologia , Animais , Encéfalo/citologia , Conectoma , Rede de Modo Padrão/citologia , Imageamento por Ressonância Magnética , Camundongos , Rede Nervosa/citologia , Neurônios/citologia
9.
Elife ; 102021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473054

RESUMO

Abundant evidence supports the presence of at least three distinct types of thalamocortical (TC) neurons in the primate dorsal lateral geniculate nucleus (dLGN) of the thalamus, the brain region that conveys visual information from the retina to the primary visual cortex (V1). Different types of TC neurons in mice, humans, and macaques have distinct morphologies, distinct connectivity patterns, and convey different aspects of visual information to the cortex. To investigate the molecular underpinnings of these cell types, and how these relate to differences in dLGN between human, macaque, and mice, we profiled gene expression in single nuclei and cells using RNA-sequencing. These efforts identified four distinct types of TC neurons in the primate dLGN: magnocellular (M) neurons, parvocellular (P) neurons, and two types of koniocellular (K) neurons. Despite extensively documented morphological and physiological differences between M and P neurons, we identified few genes with significant differential expression between transcriptomic cell types corresponding to these two neuronal populations. Likewise, the dominant feature of TC neurons of the adult mouse dLGN is high transcriptomic similarity, with an axis of heterogeneity that aligns with core vs. shell portions of mouse dLGN. Together, these data show that transcriptomic differences between principal cell types in the mature mammalian dLGN are subtle relative to the observed differences in morphology and cortical projection targets. Finally, alignment of transcriptome profiles across species highlights expanded diversity of GABAergic neurons in primate versus mouse dLGN and homologous types of TC neurons in primates that are distinct from TC neurons in mouse.


Assuntos
Núcleo Celular/genética , Corpos Geniculados/metabolismo , Neurônios/metabolismo , Córtex Visual/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Macaca , Camundongos , RNA-Seq , Análise de Célula Única , Tálamo/metabolismo , Vias Visuais/metabolismo
10.
Neuron ; 109(9): 1449-1464.e13, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33789083

RESUMO

Rapid cell type identification by new genomic single-cell analysis methods has not been met with efficient experimental access to these cell types. To facilitate access to specific neural populations in mouse cortex, we collected chromatin accessibility data from individual cells and identified enhancers specific for cell subclasses and types. When cloned into recombinant adeno-associated viruses (AAVs) and delivered to the brain, these enhancers drive transgene expression in specific cortical cell subclasses. We extensively characterized several enhancer AAVs to show that they label different projection neuron subclasses as well as a homologous neuron subclass in human cortical slices. We also show how coupling enhancer viruses expressing recombinases to a newly generated transgenic mouse, Ai213, enables strong labeling of three different neuronal classes/subclasses in the brain of a single transgenic animal. This approach combines unprecedented flexibility with specificity for investigation of cell types in the mouse brain and beyond.


Assuntos
Encéfalo/citologia , Neurônios/classificação , Neurônios/citologia , Análise de Célula Única/métodos , Animais , Conjuntos de Dados como Assunto , Dependovirus , Humanos , Camundongos , Camundongos Transgênicos
11.
Nat Neurosci ; 22(7): 1182-1195, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209381

RESUMO

Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To systematically profile morpho-electric properties of mammalian neurons, we established a single-cell characterization pipeline using standardized patch-clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly accessible online database, the Allen Cell Types Database, to display these datasets. Intrinsic physiological properties were measured from 1,938 neurons from the adult laboratory mouse visual cortex, morphological properties were measured from 461 reconstructed neurons, and 452 neurons had both measurements available. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We established a taxonomy of morphologically and electrophysiologically defined cell types for this region of the cortex, with 17 electrophysiological types, 38 morphological types and 46 morpho-electric types. There was good correspondence with previously defined transcriptomic cell types and subclasses using the same transgenic mouse lines.


Assuntos
Conjuntos de Dados como Assunto , Neurônios/classificação , Córtex Visual/citologia , Potenciais de Ação , Animais , Forma Celular , Bases de Dados Factuais , Genes Reporter , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Transcriptoma , Córtex Visual/fisiologia
12.
PLoS One ; 13(12): e0209648, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586455

RESUMO

Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection. Although more transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues.


Assuntos
Núcleo Celular/genética , Análise de Célula Única , Transcriptoma/genética , Córtex Visual/metabolismo , Animais , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Perfilação da Expressão Gênica/métodos , Camundongos , Neurônios/metabolismo , Análise de Sequência de RNA/métodos , Córtex Visual/fisiologia
13.
Nat Commun ; 8: 15604, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569837

RESUMO

Single-cell characterization and perturbation of neurons provides knowledge critical to addressing fundamental neuroscience questions including the structure-function relationship and neuronal cell-type classification. Here we report a robot for efficiently performing in vivo single-cell experiments in deep brain tissues optically difficult to access. This robot automates blind (non-visually guided) single-cell electroporation (SCE) and extracellular electrophysiology, and can be used to characterize neuronal morphological and physiological properties of, and/or manipulate genetic/chemical contents via delivering extraneous materials (for example, genes) into single neurons in vivo. Tested in the mouse brain, our robot successfully reveals the full morphology of single-infragranular neurons recorded in multiple neocortical regions, as well as deep brain structures such as hippocampal CA3, with high efficiency. Our robot thus can greatly facilitate the study of in vivo full morphology and electrophysiology of single neurons in the brain.


Assuntos
Encéfalo/fisiologia , Neurônios/fisiologia , Robótica/métodos , Análise de Célula Única/métodos , Animais , Encéfalo/citologia , Fenômenos Eletrofisiológicos/fisiologia , Eletroporação/instrumentação , Eletroporação/métodos , Desenho de Equipamento , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Modelos Animais , Robótica/instrumentação , Análise de Célula Única/instrumentação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA