Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunity ; 49(6): 1148-1161.e7, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30552023

RESUMO

Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single-cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12). These DCs did not bind anti-PD-1 but produced IL-12 upon sensing interferon γ (IFN-γ) that was released from neighboring T cells. In turn, DC-derived IL-12 stimulated antitumor T cell immunity. These findings suggest that full-fledged activation of antitumor T cells by anti-PD-1 is not direct, but rather involves T cell:DC crosstalk and is licensed by IFN-γ and IL-12. Furthermore, we found that activating the non-canonical NF-κB transcription factor pathway amplified IL-12-producing DCs and sensitized tumors to anti-PD-1 treatment, suggesting a therapeutic strategy to improve responses to checkpoint blockade.


Assuntos
Células Dendríticas/imunologia , Interferon gama/imunologia , Interleucina-12/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo , Interleucina-12/administração & dosagem , Interleucina-12/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , NF-kappa B/imunologia , NF-kappa B/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
3.
PLoS Pathog ; 11(9): e1005166, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26407100

RESUMO

Mouse polyomavirus (MPyV) lytically infects mouse cells, transforms rat cells in culture, and is highly oncogenic in rodents. We have used deep sequencing to follow MPyV infection of mouse NIH3T6 cells at various times after infection and analyzed both the viral and cellular transcriptomes. Alignment of sequencing reads to the viral genome illustrated the transcriptional profile of the early-to-late switch with both early-strand and late-strand RNAs being transcribed at all time points. A number of novel insights into viral gene expression emerged from these studies, including the demonstration of widespread RNA editing of viral transcripts at late times in infection. By late times in infection, 359 host genes were seen to be significantly upregulated and 857 were downregulated. Gene ontology analysis indicated transcripts involved in translation, metabolism, RNA processing, DNA methylation, and protein turnover were upregulated while transcripts involved in extracellular adhesion, cytoskeleton, zinc finger binding, SH3 domain, and GTPase activation were downregulated. The levels of a number of long noncoding RNAs were also altered. The long noncoding RNA MALAT1, which is involved in splicing speckles and used as a marker in many late-stage cancers, was noticeably downregulated, while several other abundant noncoding RNAs were strongly upregulated. We discuss these results in light of what is currently known about the MPyV life cycle and its effects on host cell growth and metabolism.


Assuntos
Genoma Viral/genética , Interações Hospedeiro-Parasita/genética , Infecções por Polyomavirus/genética , Infecções Tumorais por Vírus/genética , Animais , Linhagem Celular , Camundongos , Polyomavirus/genética , Edição de RNA/genética , RNA Viral/genética
4.
Neuromuscul Disord ; 32(11-12): 908-922, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418198

RESUMO

Mutations in the dystrophin gene cause the most common and currently incurable Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting. Although abnormal Ca2+ handling is a pathological feature of DMD, mechanisms underlying defective Ca2+ homeostasis remain unclear. Here we generate a novel DMD patient-derived pluripotent stem cell (PSC) model of skeletal muscle with an isogenic control using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated precise gene correction. Transcriptome analysis identifies dysregulated gene sets in the absence of dystrophin, including genes involved in Ca2+ handling, excitation-contraction coupling and muscle contraction. Specifically, analysis of intracellular Ca2+ transients and mathematical modeling of Ca2+ dynamics reveal significantly reduced cytosolic Ca2+ clearance rates in DMD-PSC derived myotubes. Pharmacological assays demonstrate Ca2+ flux in myotubes is determined by both intracellular and extracellular sources. DMD-PSC derived myotubes display significantly reduced velocity of contractility. Compared with a non-isogenic wildtype PSC line, these pathophysiological defects could be rescued by CRISPR-mediated precise gene correction. Our study provides new insights into abnormal Ca2+ homeostasis in DMD and suggests that Ca2+ signaling pathways amenable to pharmacological modulation are potential therapeutic targets. Importantly, we have established a human physiology-relevant in vitro model enabling rapid pre-clinical testing of potential therapies for DMD.


Assuntos
Distrofia Muscular de Duchenne , Células-Tronco Pluripotentes , Humanos , Distrofina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
5.
Dis Model Mech ; 15(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196640

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by misexpression of the DUX4 transcription factor in skeletal muscle that results in transcriptional alterations, abnormal phenotypes and cell death. To gain insight into the kinetics of DUX4-induced stresses, we activated DUX4 expression in myoblasts and performed longitudinal RNA sequencing paired with proteomics and phosphoproteomics. This analysis revealed changes in cellular physiology upon DUX4 activation, including DNA damage and altered mRNA splicing. Phosphoproteomic analysis uncovered rapid widespread changes in protein phosphorylation following DUX4 induction, indicating that alterations in kinase signaling might play a role in DUX4-mediated stress and cell death. Indeed, we demonstrate that two stress-responsive MAP kinase pathways, JNK and p38, are activated in response to DUX4 expression. Inhibition of each of these pathways ameliorated DUX4-mediated cell death in myoblasts. These findings uncover that the JNK pathway is involved in DUX4-mediated cell death and provide additional insights into the role of the p38 pathway, a clinical target for the treatment of FSHD.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mioblastos/metabolismo , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo
6.
Theranostics ; 8(21): 5842-5854, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613266

RESUMO

Tumor-associated macrophages (TAM) have attracted attention as they can modulate key cancer-related activities, yet TAM represent a heterogenous group of cells that remain incompletely characterized. In growing tumors, TAM are often referred to as M2-like macrophages, which are cells that display immunosuppressive and tumorigenic functions and express the enzyme arginase 1 (Arg1). Methods: Here we combined high resolution intravital imaging with single cell RNA seq to uncover the topography and molecular profiles of immunosuppressive macrophages in mice. We further assessed how immunotherapeutic interventions impact these cells directly in vivo. Results: We show that: i) Arg1+ macrophages are more abundant in tumors compared to other organs; ii) there exist two morphologically distinct subsets of Arg1 TAM defined by previously unknown markers (Gbp2b, Bst1, Sgk1, Pmepa1, Ms4a7); iii) anti-Programmed Cell Death-1 (aPD-1) therapy decreases the number of Arg1+ TAM while increasing Arg1- TAM; iv) accordingly, pharmacological inhibition of arginase 1 does not synergize with aPD-1 therapy. Conclusion: Overall, this research shows how powerful complementary single cell analytical approaches can be used to improve our understanding of drug action in vivo.


Assuntos
Arginase/análise , Expressão Gênica , Tolerância Imunológica , Linfoma/patologia , Macrófagos/química , Macrófagos/imunologia , Melanoma/patologia , Animais , Modelos Animais de Doenças , Microscopia Intravital , Camundongos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA