Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 323(1): H146-H164, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35622533

RESUMO

The goal of this study was to develop an atlas of the metabolic, transcriptional, and proteomic changes that occur with pregnancy in the maternal heart. Timed pregnancy studies in FVB/NJ mice revealed a significant increase in heart size by day 8 of pregnancy (midpregnancy; MP), which was sustained throughout the rest of the term compared with nonpregnant control mice. Cardiac hypertrophy and myocyte cross-sectional area were highest 7 days after birth (postbirth; PB) and were associated with significant increases in end-diastolic and end-systolic left ventricular volumes and higher cardiac output. Metabolomics analyses revealed that by day 16 of pregnancy (late pregnancy; LP) metabolites associated with nitric oxide production as well as acylcholines, sphingomyelins, and fatty acid species were elevated, which coincided with a lower activation state of phosphofructokinase and higher levels of pyruvate dehydrogenase kinase 4 (Pdk4) and ß-hydroxybutyrate dehydrogenase 1 (Bdh1). In the postpartum period, urea cycle metabolites, polyamines, and phospholipid levels were markedly elevated in the maternal heart. Cardiac transcriptomics in LP revealed significant increases in not only Pdk4 and Bdh1 but also genes that regulate glutamate and ketone body oxidation, which were preceded in MP by higher expression of transcripts controlling cell proliferation and angiogenesis. Proteomics analysis of the maternal heart in LP and PB revealed significant reductions in several contractile filament and mitochondrial subunit complex proteins. Collectively, these findings describe the coordinated molecular changes that occur in the maternal heart during and after pregnancy.NEW & NOTEWORTHY Little is known of the underlying molecular and cellular mechanisms that contribute to pregnancy-induced cardiac growth. Several lines of evidence suggest that changes in cardiac metabolism may contribute. Here, we provide a comprehensive metabolic atlas of the metabolomic, proteomic, and transcriptomic changes occurring in the maternal heart. We show that pregnancy-induced cardiac growth is associated with changes in glycerophospholipid, nucleotide, and amino acid metabolism, with reductions in cardiac glucose catabolism. Collectively, these results suggest that substantial metabolic changes occur in the maternal heart during and after pregnancy.


Assuntos
Coração , Proteômica , Animais , Cardiomegalia/metabolismo , Feminino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Oxirredução , Gravidez
2.
Am J Physiol Heart Circ Physiol ; 321(4): H784-H797, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533403

RESUMO

Coenzyme A (CoA) is an essential cofactor required for intermediary metabolism. Perturbations in homeostasis of CoA have been implicated in various pathologies; however, whether CoA homeostasis is changed and the extent to which CoA levels contribute to ventricular function and remodeling during pressure overload has not been explored. In this study, we sought to assess changes in CoA biosynthetic pathway during pressure overload and determine the impact of limiting CoA on cardiac function. We limited cardiac CoA levels by deleting the rate-limiting enzyme in CoA biosynthesis, pantothenate kinase 1 (Pank1). We found that constitutive, cardiomyocyte-specific Pank1 deletion (cmPank1-/-) significantly reduced PANK1 mRNA, PANK1 protein, and CoA levels compared with Pank1-sufficient littermates (cmPank1+/+) but exerted no obvious deleterious impact on the mice at baseline. We then subjected both groups of mice to pressure overload-induced heart failure. Interestingly, there was more ventricular dilation in cmPank1-/- during the pressure overload. To explore potential mechanisms contributing to this phenotype, we performed transcriptomic profiling, which suggested a role for Pank1 in regulating fibrotic and metabolic processes during the pressure overload. Indeed, Pank1 deletion exacerbated cardiac fibrosis following pressure overload. Because we were interested in the possibility of early metabolic impacts in response to pressure overload, we performed untargeted metabolomics, which indicated significant changes to metabolites involved in fatty acid and ketone metabolism, among other pathways. Collectively, our study underscores the role of elevated CoA levels in supporting fatty acid and ketone body oxidation, which may be more important than CoA-driven, enzyme-independent acetylation in the failing heart.NEW & NOTEWORTHY Changes in CoA homeostasis have been implicated in a variety of metabolic diseases; however, the extent to which changes in CoA homeostasis impacts remodeling has not been explored. We show that limiting cardiac CoA levels via PANK deletion exacerbated ventricular remodeling during pressure overload. Our results suggest that metabolic alterations, rather than structural alterations, associated with Pank1 deletion may underlie the exacerbated cardiac phenotype during pressure overload.


Assuntos
Metabolismo Energético , Miocárdio/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Apoptose , Pressão Arterial , Coenzima A/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Deleção de Genes , Humanos , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transcriptoma , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
3.
Toxicol Sci ; 185(1): 64-76, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718823

RESUMO

Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals, and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, and 6 weeks) or high-efficiency particulate absorbing-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone, and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5- to 2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Animais , Benzeno/toxicidade , Células Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Remodelação Ventricular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA