Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(34): 14363-14367, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32515041

RESUMO

Conjugated aromatic macrocycles are attractive due to their unique photophysical and optoelectronic properties. In particular, the cyclic radially oriented π-system of cycloparaphenylenes (CPPs) gives rise to photophysical properties unlike any other small molecule or carbon nanomaterial. CPPs have tunable emission, possess large extinction coefficients, wide effective Stokes shifts, and high quantum yields. However, accessing bright CPPs with emissions beyond 500 nm remains difficult. Herein, we present a novel and bright orange-emitting CPP-based fluorophore showing a dramatic 105 nm red-shift in emission and striking 237 nm effective Stokes shift while retaining a large quantum yield of 0.59. We postulate, and experimentally and theoretically support, that the quantum yield remains large due to the lack of intramolecular charge transfer.

2.
Cells ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334658

RESUMO

Healthy human skin tissue is often used as a control for comparison to diseased skin in patients with skin pathologies, including skin cancers or other inflammatory conditions such as atopic dermatitis or psoriasis. Although non-affected skin from these patients is a more appropriate choice for comparison, there is a paucity of studies examining such tissue. This lack is exacerbated by the difficulty of processing skin tissue for experimental analysis. In addition, choosing a processing protocol for skin tissue which preserves cell viability and identity while sufficiently dissociating cells for single-cell analysis is not a trivial task. Here, we compare three digestion methods for human skin tissue, evaluating the cell yield and viability for each protocol. We find that the use of a sequential dissociation method with multiple enzymatic digestion steps produces the highest cell viability. Using single-cell sequencing, we show this method results in a relative increase in the proportion of non-antigen-presenting mast cells and CD8 T cells as well as a relative decrease in the proportion of antigen-presenting mast cells and KYNU+ CD4 T cells. Overall, our findings support the use of this sequential digestion method on freshly processed human skin samples for optimal cell yield and viability.


Assuntos
Dermatite Atópica , Pele , Humanos , Pele/patologia , Subpopulações de Linfócitos T/patologia , Dermatite Atópica/patologia , Análise de Sequência de RNA , Digestão
3.
Life (Basel) ; 13(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37109503

RESUMO

The past decade has seen numerous advancements in approaches to melanoma detection, each with the common goal to stem the growing incidence of melanoma and its mortality rate. These advancements, while well documented to increase early melanoma detection, have also garnered considerable criticism of their efficacy for improving survival rates. In this review, we discuss the current state of such early detection approaches that do not require direct dermatologist intervention. Our findings suggest that a number of at-home and non-specialist methods exist with high accuracy for detecting melanoma, albeit with a few notable concerns worth further investigation. Additionally, research continues to find new approaches using artificial intelligence which have promise for the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA