Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 3(3): 407-13, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1892651

RESUMO

The initiation of eukaryotic DNA synthesis occurs at specific sites determined by both cis- and trans-acting elements. Here I review advances in the characterization of yeast origins, origin-binding proteins and the relationship of DNA replication to nuclear substructure in yeast.


Assuntos
Replicação do DNA , DNA/genética , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico
2.
Curr Opin Cell Biol ; 6(3): 373-9, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7917328

RESUMO

In yeast, the study of the teleomere has recently provided new information on the requirements for chromosome stability, on elements influencing nuclear architecture and on position-effect variegation.


Assuntos
Cromossomos/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Animais , Sequência de Bases , Cromossomos/ultraestrutura , DNA Fúngico/genética , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Transcrição Gênica
3.
Curr Opin Cell Biol ; 10(3): 304-10, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9640529

RESUMO

Current paradigms for the regulation of genomic DNA replication in eukaryotes are derived primarily from cell fusion experiments, yeast genetics, and from in vitro assays in Xenopus egg extracts. Initially, many aspects seemed irreconcilably different among the various organisms and model systems. In the past year, however, divergent approaches have arrived at a consensus on how the cell cycle regulates the initiation of DNA replication. All major players appear to be conserved from yeast to vertebrates, yet the important challenge of reconstituting eukaryotic replication from purified components remains. Three novel in vitro assays that replicate nuclear templates bring us closer to this goal.


Assuntos
Replicação do DNA , Técnicas Genéticas , Animais , Humanos , Saccharomyces cerevisiae/genética , Xenopus/genética
4.
Curr Opin Cell Biol ; 13(3): 281-9, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11343898

RESUMO

We envision multiple steps in telomere maintenance, based largely on genetic data from budding yeast. First, the telomere must unfold or open itself such that the free end is accessible to the appropriate enzymatic machinery. Second, telomerase must be recruited, together with the DNA replication machinery that synthesizes the C-rich strand. The processivity of telomerase is regulated both by a length-sensing feedback mechanism and by second-strand synthesis. Finally, the telosome refolds into a protective end structure. If telomerase is nonfunctional, recombination may occur once telomeres are open. Multiple pathways regulate these different steps, producing a highly dynamic chromosomal cap.


Assuntos
Cromossomos/metabolismo , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Telomerase/metabolismo , Telômero/metabolismo , Animais , Cromossomos/genética , Cromossomos/ultraestrutura , Replicação do DNA/genética , Proteínas Fúngicas/metabolismo , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares , Dobramento de Proteína , Proteínas de Ligação a RNA , Saccharomyces/genética , Saccharomyces/metabolismo , Telômero/genética , Telômero/ultraestrutura
5.
Trends Cell Biol ; 3(4): 128-34, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14731767

RESUMO

The single molecule of DNA that constitutes a eukaryotic chromosome begins and ends with a stretch of repetitive DNA known as a telomere. These sequences appear to be necessary to preserve the integrity of the genetic material through the cell cycle. Telomeric DNA is organized into regions of non-nucleosomal chromatin called the telosome, which can interact with other telosomes and with the nuclear envelope. This review focuses on cytological evidence for these interactions and on recent insights into the molecular organization of the telomeric complex.

6.
Trends Cell Biol ; 11(12): 519-25, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11719059

RESUMO

The positioning of chromosomal domains in the interphase nucleus is proposed to facilitate gene regulation in simple cells such as yeasts and to coordinate patterns of gene expression and activation of origins of replication during cell differentiation in complex organisms. Over the past 10-12 years, detailed information on the organization of interphase chromosomes has accumulated from three-dimensional microscopy of fixed cells labeled by in situ hybridization and immunofluorescence techniques. Recently, time-lapse fluorescence microscopy of GFP-tagged domains has shown that interphase chromatin can be highly dynamic, moving distances >0.5 microm within seconds. Novel fluorescence techniques show that most nuclear proteins are also highly mobile. Both the rapid oscillations of chromatin and long-range movements of chromosomes suggest new mechanisms for spatial and temporal control of transcription and other nuclear events.


Assuntos
Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromossomos/metabolismo , Microscopia de Fluorescência/métodos , Telômero/ultraestrutura , Animais , Centrômero/metabolismo , Centrômero/ultraestrutura , Cromatina/metabolismo , Cromatina/ultraestrutura , Cromossomos/ultraestrutura , Replicação do DNA/fisiologia , Humanos , Interfase/fisiologia , Movimento/fisiologia , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Telômero/metabolismo , Fatores de Tempo
7.
J Cell Biol ; 152(2): 385-400, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11266454

RESUMO

We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)-tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/genética , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/ultraestrutura , Replicação do DNA , Fase G1 , Fase G2 , Proteínas de Fluorescência Verde , Hibridização in Situ Fluorescente , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Membrana Nuclear/fisiologia , Proteínas Recombinantes de Fusão/análise , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura
8.
J Cell Biol ; 134(6): 1349-63, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8830766

RESUMO

We have developed a novel technique for combined immunofluorescence/in situ hybridization on fixed budding yeast cells that maintains the three-dimensional structure of the nucleus as monitored by focal sections of cells labeled with fluorescent probes and by staining with a nuclear pore antibody. Within the resolution of these immunodetection techniques, we show that proteins encoded by the SIR3, SIR4, and RAP1 genes colocalize in a statistically significant manner with Y' telomere-associated DNA sequences. In wild-type cells the Y' in situ hybridization signals can be resolved by light microscopy into fewer than ten foci per diploid nucleus. This suggests that telomeres are clustered in vegetatively growing cells, and that proteins essential for telomeric silencing are concentrated at their sites of action, i.e., at telomeres and/or subtelomeric regions. As observed for Rap1, the Sir4p staining is diffuse in a sir3- strain, and similarly, Sir3p staining is no longer punctate in a sir4- strain, although the derivatized Y' probe continues to label discrete sites in these strains. Nonetheless, the Y' FISH is altered in a qualitative manner in sir3 and sir4 mutant strains, consistent with the previously reported phenotypes of shortened telomeric repeats and loss of telomeric silencing.


Assuntos
Proteínas Fúngicas/análise , Proteínas de Ligação ao GTP/análise , Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero/fisiologia , Transativadores/análise , Especificidade de Anticorpos , Western Blotting , Núcleo Celular/química , Imunofluorescência , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Hibridização in Situ Fluorescente , Mutação/fisiologia , RNA Mensageiro/análise , Saccharomyces cerevisiae/fisiologia , Telômero/química , Transativadores/genética , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Proteínas rap de Ligação ao GTP
9.
J Cell Biol ; 129(4): 909-24, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7744964

RESUMO

The Silent Information Regulatory proteins, Sir3 and Sir4, and the telomeric repeat-binding protein RAP1 are required for the chromatin-mediated gene repression observed at yeast telomeric regions. All three proteins are localized by immunofluorescence staining to foci near the nuclear periphery suggesting a relationship between subnuclear localization and silencing. We present several lines of immunological and biochemical evidence that Sir3, Sir4, and RAP1 interact in intact yeast cells. First, immunolocalization of Sir3 to foci at the yeast nuclear periphery is lost in rap1 mutants carrying deletions for either the terminal 28 or 165 amino acids of RAP1. Second, the perinuclear localization of both Sir3 and RAP1 is disrupted by overproduction of the COOH terminus of Sir4. Third, overproduction of the Sir4 COOH terminus alters the solubility properties of both Sir3 and full-length Sir4. Finally, we demonstrate that RAP1 and Sir4 coprecipitate in immune complexes using either anti-RAP1 or anti-Sir4 antibodies. We propose that the integrity of a tertiary complex between Sir4, Sir3, and RAP1 is involved in both the maintenance of telomeric repression and the clustering of telomeres in foci near the nuclear periphery.


Assuntos
Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero/genética , Compartimento Celular , Núcleo Celular/metabolismo , Imunofluorescência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Substâncias Macromoleculares , Proteínas Nucleares/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Solubilidade , Relação Estrutura-Atividade , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
10.
J Cell Biol ; 117(5): 935-48, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1315786

RESUMO

Topoisomerase II (topoII) and RAP1 (Repressor Activator Protein 1) are two abundant nuclear proteins with proposed structural roles in the higher-order organization of chromosomes. Both proteins co-fractionate as components of nuclear scaffolds from vegetatively growing yeast cells, and both proteins are present as components of pachytene chromosome, co-fractionating with an insoluble subfraction of meiotic nuclei. Immunolocalization using antibodies specific for topoII shows staining of an axial core of the yeast meiotic chromosome, extending the length of the synaptonemal complex. RAP1, on the other hand, is located at the ends of the paired bivalent chromosomes, consistent with its ability to bind telomeric sequences in vitro. In interphase nuclei, again in contrast to anti-topoII, anti-RAP1 gives a distinctly punctate staining that is located primarily at the nuclear periphery. Approximately 16 brightly staining foci can be identified in a diploid nucleus stained with anti-RAP1 antibodies, suggesting that telomeres are grouped together, perhaps through interaction with the nuclear envelope.


Assuntos
Núcleo Celular/química , Cromossomos Fúngicos/química , DNA Topoisomerases Tipo II/análise , Proteínas de Ligação ao GTP/análise , Saccharomyces cerevisiae/química , Sequência de Bases , Sítios de Ligação/genética , Núcleo Celular/enzimologia , Cromossomos Fúngicos/enzimologia , Imunofluorescência , Meiose/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/análise , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas rap de Ligação ao GTP
11.
Science ; 288(5470): 1377-9, 2000 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-10827940

RESUMO

How a cell distinguishes a double-strand break from the end of a chromosome has long fascinated cell biologists. It was thought that the protection of chromosomal ends required either a telomere-specific complex or the looping back of the 3' TG-rich overhang to anneal with a homologous double-stranded repeat. These models must now accommodate the findings that complexes involved in nonhomologous end joining play important roles in normal telomere length maintenance, and that subtelomeric chromatin changes in response to the DNA damage checkpoint. A hypothetical chromatin assembly checkpoint may help to explain why telomeres and the double-strand break repair machinery share essential components.


Assuntos
Antígenos Nucleares , DNA Helicases , Reparo do DNA , Proteínas , Ribonucleases , Proteínas de Saccharomyces cerevisiae , Telômero/química , Telômero/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Autoantígeno Ku , Proteínas Nucleares/metabolismo , Telomerase/metabolismo , Fatores de Transcrição/metabolismo , Leveduras/metabolismo
12.
Science ; 294(5549): 2181-6, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11739961

RESUMO

Little is known about the dynamics of chromosomes in interphase nuclei. By tagging four chromosomal regions with a green fluorescent protein fusion to lac repressor, we monitored the movement and subnuclear position of specific sites in the yeast genome, sampling at short time intervals. We found that early and late origins of replication are highly mobile in G1 phase, frequently moving at or faster than 0.5 micrometers/10 seconds, in an energy-dependent fashion. The rapid diffusive movement of chromatin detected in G1 becomes constrained in S phase through a mechanism dependent on active DNA replication. In contrast, telomeres and centromeres provide replication-independent constraint on chromatin movement in both G1 and S phases.


Assuntos
Cromatina/fisiologia , Cromossomos Fúngicos/fisiologia , Interfase , Saccharomyces cerevisiae/fisiologia , Trifosfato de Adenosina/metabolismo , Núcleo Celular/fisiologia , Centrômero/fisiologia , Replicação do DNA , DNA Fúngico/biossíntese , Fase G1 , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Filmes Cinematográficos , Mutação , Membrana Nuclear/fisiologia , Origem de Replicação , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Telômero/fisiologia
13.
Curr Opin Genet Dev ; 9(2): 199-205, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10322139

RESUMO

Improvements in fluorescence microscopy have allowed us to explore the three-dimensional organization of the nucleus in ways that were impossible ten years ago, revealing subdomains or compartments within the nucleus defined by their enrichments of subsets of factors. Correlations have been drawn between the silencing of a gene and its proximity to a heterochromatic compartment or to the nuclear periphery. The application of genetics and high-resolution microscopy helps examine the creation, maintenance and impact of these compartments on gene expression.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Animais , Núcleo Celular/ultraestrutura , Heterocromatina/genética , Telômero
14.
Curr Opin Genet Dev ; 8(2): 254-9, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9610418

RESUMO

Recent evidence suggests that members of the structural maintenance of chromosomes (SMC) protein family are involved in a much broader spectrum of chromosome and DNA metabolic reactions than was originally thought. Other than their role in chromosome condensation, SMC proteins are essential for sister chromatid cohesion and gene dosage compensation, and are involved in DNA recombination. This diversity of function is achieved both through the formation of different heterodimers and through their participation in higher-order protein complexes adapted to achieve specific ends.


Assuntos
Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Cromatina , Reparo do DNA , Mitose , Proteínas Nucleares/metabolismo , Recombinação Genética
15.
Curr Biol ; 5(4): 357-60, 1995 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-7627547

RESUMO

The mechanism by which eukaryotic chromosomes condense as cells enter mitosis has long been inaccessible to molecular biologists. An important clue has now been provided by a ubiquitous protein family, the SMCs.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Cromossomos/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Dados de Sequência Molecular
16.
Curr Biol ; 6(10): 1222-5, 1996 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-8939565

RESUMO

Recent findings indicate that heterochromatin serves as a molecular sink for factors involved in chromatin-mediated repression of gene expression; long-range interactions that position a euchromatic gene near a heterochromatin domain influence its susceptibility to transcriptional silencing.


Assuntos
Cromatina/fisiologia , Regulação da Expressão Gênica/fisiologia , Animais , Drosophila/genética , Heterocromatina/fisiologia , Saccharomyces cerevisiae/genética , Telômero , Transativadores/fisiologia
18.
Curr Biol ; 8(13): 787-90, 1998 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-9651685

RESUMO

Several regions of the Saccharomyces cerevisiae genome are subject to position-dependent transcriptional repression mediated by a multi-component nucleosome-binding complex of silent information regulator proteins (Sir2p, Sir3p and Sir4p). These proteins are present in limiting amounts in the nucleus and are targeted to specific chromosomal regions by interaction with sequence-specific DNA-binding factors. Different sites of repression compete for Sir complexes, although it is not known how Sir distribution is regulated. In a screen for factors that interact with Sir4p amino terminus, we have cloned SIF2, which encodes a WD40-repeat-containing factor that disrupts telomeric silencing when overexpressed. In contrast to deletion of SIR4, SIF2 deletion improved telomeric repression, suggesting that under normal conditions Sif2p antagonizes Sir4p function at telomeres. Sif2p overexpression altered the subnuclear localization of Sir4p, but not its protein expression level, suggesting that Sif2p may recruit Sir4p to nontelomeric sites or repression. The sif2 mutant strains were hypersensitive to a range of stress conditions, but did not have decreased viability and did not alter repression in the rDNA. In conclusion, Sif2p resembles the Sir4p regulatory proteins Sir1p and Uth4p in that it competes for the functional assembly of Sir4p at telomeres, yet unlike Sir1p or Uth4p, it does not target Sir4p to either mating-type or rDNA loci.


Assuntos
Proteínas de Ciclo Celular , Proteínas Fúngicas/fisiologia , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero/fisiologia , Ligação Competitiva , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona Desacetilases , Mutação/genética , Proteínas de Ligação a RNA , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética
19.
Curr Biol ; 10(7): 373-82, 2000 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-10753745

RESUMO

BACKGROUND: During the mating pheromone response in budding yeast, activation of a mitogen-activated protein kinase (MAP kinase) cascade results in well-characterized changes in cytoskeletal organization and gene expression. Spatial reorganization of genes within the nucleus has been documented during cell-type differentiation in mammalian cells, but no information was previously available on the morphology of the yeast nucleus during the major transcriptional reprogramming that accompanies zygote formation. RESULTS: We find that in response to mating pheromone, budding yeast nuclei assume an unusual dumbbell shape, reflecting a spatial separation of chromosomal and nucleolar domains. Within the chromosomal domain, telomeric foci persist and maintain their associated complement of Sir proteins. The nucleolus, on the other hand, assumes a novel cup-shaped morphology and a position distal to the mating projection tip. Although microtubules are required for this orientation with respect to the projection tip, neither microtubules nor actin polymerization are necessary for the observed changes in nuclear shape. We find that activation of the pheromone-response MAP kinase pathway by ectopic expression of STE4 or STE11 leads to identical nuclear and nucleolar reorganization in the absence of pheromone. Mutation of downstream effector MAP kinases Fus3p and Kss1p, or of the transcriptional regulator Ste12p, blocks nuclear shape changes, whereas overexpression of Ste12p promotes dumbbell-shaped nuclei in the absence of pheromone. CONCLUSIONS: Nuclear remodeling occurs when the MAP kinase cascade is activated by yeast pheromone, but it is independent of the cytoskeletal reorganization regulated by the same signaling pathway. Activation of the Ste12p transcription factor is necessary, and may be sufficient, for the changes in nuclear structure that coincide with developmentally significant changes in gene expression.


Assuntos
Núcleo Celular/ultraestrutura , Sistema de Sinalização das MAP Quinases , Feromônios/farmacologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Proteínas de Schizosaccharomyces pombe , Fatores de Transcrição , Zigoto/fisiologia , Actinas/metabolismo , Nucléolo Celular/ultraestrutura , Proteínas Fúngicas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Telômero/ultraestrutura
20.
Curr Biol ; 8(11): 653-6, 1998 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-9635192

RESUMO

The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.


Assuntos
Antígenos Nucleares , DNA Helicases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Proteínas de Ligação a Telômeros , Fatores de Transcrição , Animais , Núcleo Celular/metabolismo , Deleção de Genes , Autoantígeno Ku , Saccharomyces cerevisiae/ultraestrutura , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA