Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(40): e2409062121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39331408

RESUMO

Deployable tubular structures, designed for functional expansion, serve a wide range of applications, from flexible pipes to stiff structural elements. These structures, which transform from compact states, are crucial for creating adaptive solutions across engineering and scientific fields. A significant barrier to advancing their performance is balancing expandability with stiffness. Using compliant materials, these structures achieve more flexible transformations than those possible with rigid mechanisms. However, they typically exhibit reduced stiffness when subjected to external pressures (e.g., tube wall loading). Here, we utilize origami-inspired techniques and internal stiffeners to meet conflicting performance requirements. A self-locking mechanism is proposed, which combines the folding behavior observed in curved-crease origami and elastic shell buckling. This mechanism employs simple shell components, including internal diaphragms that undergo pseudofolding in a confined boundary condition to enable a snap-through transition. We reveal that the deployed tube is self-locked through geometrical interference, creating a braced tubular arrangement. This arrangement gives a direction-dependent structural performance, ranging from elastic response to crushing, thereby offering the potential for programmable structures. We demonstrate that our approach can advance existing deployment mechanisms (e.g., coiled and inflatable systems) and create diverse structural designs (e.g., metamaterials, adaptive structures, cantilevers, and lightweight panels).Weanticipate our design to be a starting point to drive technological advancement in real-world deployable tubular structures.

2.
PLoS One ; 16(2): e0245737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556092

RESUMO

The COVID-19 pandemic has created enormous global demand for personal protective equipment (PPE). Face shields are an important component of PPE for front-line workers in the context of the COVID-19 pandemic, providing protection of the face from splashes and sprays of virus-containing fluids. Existing face shield designs and manufacturing procedures may not allow for production and distribution of face shields in sufficient volume to meet global demand, particularly in Low and Middle-Income countries. This paper presents a simple, fast, and cost-effective curved-crease origami technique for transforming flat sheets of flexible plastic material into face shields for infection control. It is further shown that the design could be produced using a variety of manufacturing methods, ranging from manual techniques to high-volume die-cutting and creasing. This demonstrates the potential for the design to be applied in a variety of contexts depending on available materials, manufacturing capabilities and labour. An easily implemented and flexible physical-digital parametric design methodology for rapidly exploring and refining variations on the design is presented, potentially allowing others to adapt the design to accommodate a wide range of ergonomic and protection requirements.


Assuntos
COVID-19/prevenção & controle , Equipamento de Proteção Individual , COVID-19/virologia , Humanos , Imageamento Tridimensional , Fotogrametria , SARS-CoV-2/fisiologia
3.
Sci Rep ; 6: 36883, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830732

RESUMO

Origami-inspired engineering design is increasingly used in the development of self-folding structures. The majority of existing self-folding structures either use a bespoke crease pattern to form a single structure, or a universal crease pattern capable of forming numerous structures with multiple folding steps. This paper presents a new approach whereby multiple distinct, rigid-foldable crease patterns are superimposed in the same sheet such that kinematic independence and 1-DOF mobility of each individual pattern is preserved. This is enabled by the cross-crease vertex, a special configuration consisting of two pairs of collinear crease lines, which is proven here by means of a kinematic analysis to contain two independent 1-DOF rigid-foldable states. This enables many new origami-inspired engineering design possibilities, with two explored in depth: the compact folding of non-flat-foldable structures and sequent folding origami that can transform between multiple states without unfolding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA