Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(6): 1214-6, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359983

RESUMO

In mechanotransduction, sensory receptors convert force into electrical signals to mediate such diverse functions as touch, pain, and hearing. In this issue of Cell, Zhang et al. present evidence that the fly NompC channel senses mechanical stimuli using its N-terminal tail as a tether between the cell membrane and microtubules.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mecanotransdução Celular , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais
2.
Nat Chem Biol ; 19(2): 151-158, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253550

RESUMO

Colibactin, a DNA cross-linking agent produced by gut bacteria, is implicated in colorectal cancer. Its biosynthesis uses a prodrug resistance mechanism: a non-toxic precursor assembled in the cytoplasm is activated after export to the periplasm. This activation is mediated by ClbP, an inner-membrane peptidase with an N-terminal periplasmic catalytic domain and a C-terminal three-helix transmembrane domain. Although the transmembrane domain is required for colibactin activation, its role in catalysis is unclear. Our structure of full-length ClbP bound to a product analog reveals an interdomain interface important for substrate binding and enzyme stability and interactions that explain the selectivity of ClbP for the N-acyl-D-asparagine prodrug motif. Based on structural and biochemical evidence, we propose that ClbP dimerizes to form an extended substrate-binding site that can accommodate a pseudodimeric precolibactin with its two terminal prodrug motifs in the two ClbP active sites, thus enabling the coordinated activation of both electrophilic warheads.


Assuntos
Proteínas de Escherichia coli , Pró-Fármacos , Peptídeo Hidrolases/química , Escherichia coli/metabolismo , Peptídeos/química , Proteínas de Escherichia coli/metabolismo
3.
Nat Chem Biol ; 19(2): 159-167, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253549

RESUMO

The human gut bacterial genotoxin colibactin is a possible key driver of colorectal cancer (CRC) development. Understanding colibactin's biological effects remains difficult owing to the instability of the proposed active species and the complexity of the gut microbiota. Here, we report small molecule boronic acid inhibitors of colibactin biosynthesis. Designed to mimic the biosynthetic precursor precolibactin, these compounds potently inhibit the colibactin-activating peptidase ClbP. Using biochemical assays and crystallography, we show that they engage the ClbP binding pocket, forming a covalent bond with the catalytic serine. These inhibitors reproduce the phenotypes observed in a clbP deletion mutant and block the genotoxic effects of colibactin on eukaryotic cells. The availability of ClbP inhibitors will allow precise, temporal control over colibactin production, enabling further study of its contributions to CRC. Finally, application of our inhibitors to related peptidase-encoding pathways highlights the power of chemical tools to probe natural product biosynthesis.


Assuntos
Microbioma Gastrointestinal , Policetídeos , Humanos , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Escherichia coli/metabolismo , Policetídeos/química , Peptídeo Hidrolases/química
4.
Biochem Soc Trans ; 51(3): 897-923, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37283482

RESUMO

A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.


Assuntos
Manganês , Metais , Animais , Manganês/metabolismo , Metais/metabolismo , Ferro/química , Transporte Biológico , Homeostase
5.
J Bacteriol ; 204(3): e0051821, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041498

RESUMO

Natural transformation is one of the major mechanisms of horizontal gene transfer in bacterial populations and has been demonstrated in numerous species of bacteria. Despite the prevalence of natural transformation, much of the molecular mechanism remains unexplored. One major outstanding question is how the cell powers DNA import, which is rapid and highly processive. ComFA is one of a few proteins required for natural transformation in Gram-positive bacteria. Its structural resemblance to the DEAD box helicase family has led to a long-held hypothesis that ComFA acts as a motor to help drive DNA import into the cytosol. Here, we explored the helicase and translocase activity of ComFA to address this hypothesis. We followed the DNA-dependent ATPase activity of ComFA and, combined with mathematical modeling, demonstrated that ComFA likely translocates on single-stranded DNA from 5' to 3'. However, this translocase activity does not lead to DNA unwinding under the conditions we tested. Further, we analyzed the ATPase cycle of ComFA and found that ATP hydrolysis stimulates the release of DNA, providing a potential mechanism for translocation. These findings help define the molecular contribution of ComFA to natural transformation and support the conclusion that ComFA plays a key role in powering DNA uptake. IMPORTANCE Competence, or the ability of bacteria to take up and incorporate foreign DNA in a process called natural transformation, is common in the bacterial kingdom. Research in several bacterial species suggests that long, contiguous stretches of DNA are imported into cells in a processive manner, but how bacteria power transformation remains unclear. Our finding that ComFA, a DEAD box helicase required for competence in Gram-positive bacteria, translocates on single-stranded DNA from 5' to 3', supports the long-held hypothesis that ComFA may be the motor powering DNA transport during natural transformation. Moreover, ComFA may be a previously unidentified type of DEAD box helicase-one with the capability of extended translocation on single-stranded DNA.


Assuntos
Adenosina Trifosfatases , DNA de Cadeia Simples , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética
6.
Proc Natl Acad Sci U S A ; 116(36): 17825-17830, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431536

RESUMO

Clustered protocadherins, a large family of paralogous proteins that play important roles in neuronal development, provide an important case study of interaction specificity in a large eukaryotic protein family. A mammalian genome has more than 50 clustered protocadherin isoforms, which have remarkable homophilic specificity for interactions between cellular surfaces. A large antiparallel dimer interface formed by the first 4 extracellular cadherin (EC) domains controls this interaction. To understand how specificity is achieved between the numerous paralogs, we used a combination of structural and computational approaches. Molecular dynamics simulations revealed that individual EC interactions are weak and undergo binding and unbinding events, but together they form a stable complex through polyvalency. Strongly evolutionarily coupled residue pairs interacted more frequently in our simulations, suggesting that sequence coevolution can inform the frequency of interaction and biochemical nature of a residue interaction. With these simulations and sequence coevolution, we generated a statistical model of interaction energy for the clustered protocadherin family that measures the contributions of all amino acid pairs at the interface. Our interaction energy model assesses specificity for all possible pairs of isoforms, recapitulating known pairings and predicting the effects of experimental changes in isoform specificity that are consistent with literature results. Our results show that sequence coevolution can be used to understand specificity determinants in a protein family and prioritize interface amino acid substitutions to reprogram specific protein-protein interactions.


Assuntos
Caderinas/química , Caderinas/metabolismo , Caderinas/genética , Evolução Molecular , Variação Genética , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Relação Estrutura-Atividade
7.
J Biol Chem ; 295(5): 1212-1224, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31882536

RESUMO

The natural resistance-associated macrophage protein (Nramp) family encompasses transition metal and proton cotransporters that are present in many organisms from bacteria to humans. Recent structures of Deinococcus radiodurans Nramp (DraNramp) in multiple conformations revealed the intramolecular rearrangements required for alternating access of the metal-binding site to the external or cytosolic environment. Here, using recombinant proteins and metal transport and cysteine accessibility assays, we demonstrate that two parallel cytoplasm-accessible networks of conserved hydrophilic residues in DraNramp, one lining the wide intracellular vestibule for metal release and the other forming a narrow proton transport pathway, are essential for metal transport. We further show that mutagenic or posttranslational modifications of transmembrane helix (TM) 6b, which structurally links these two pathways, impede normal conformational cycling and metal transport. TM6b contains two highly conserved histidines, His232 and His237 We found that different mutagenic perturbations of His232, just below the metal-binding site along the proton exit route, differentially affect DraNramp's conformational state, suggesting that His232 serves as a pivot point for conformational changes. In contrast, any replacement of His237, lining the metal exit route, locked the transporter in a transport-inactive outward-closed state. We conclude that these two histidines, and TM6b more broadly, help trigger the bulk rearrangement of DraNramp to the inward-open state upon metal binding and facilitate return of the empty transporter to an outward-open state upon metal release.


Assuntos
Proteínas de Transporte de Cátions/química , Deinococcus/química , Histidina/química , Metais/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cobalto/química , Cobalto/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Histidina/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Transporte de Íons , Manganês/química , Manganês/metabolismo , Metais/química , Modelos Moleculares , Mutação , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética , Prótons
8.
Bioorg Med Chem Lett ; 39: 127927, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33705906

RESUMO

Propofol is a widely used general anesthetic, which acts by binding to and modulating several neuronal ion channels. We describe the synthesis of photoactivatable propofol analogs functionalized with an alkyne handle for bioorthogonal chemistry. Such tools are useful for detecting and isolating photolabeled proteins. We designed expedient and flexible synthetic routes to three new diazirine-based crosslinkable propofol derivatives, two of which have alkyne handles. As a proof of principle, we show that these compounds activate heterologously expressed Transient Receptor Potential Ankyrin 1 (TRPA1), a key ion channel of the pain pathway, with a similar potency as propofol in fluorescence-based functional assays. This work demonstrates that installation of the crosslinkable and clickable group on a short nonpolar spacer at the para position of propofol does not affect TRPA1 activation, supporting the utility of these chemical tools in identifying and characterizing potentially druggable binding sites in propofol-interacting proteins.


Assuntos
Propofol/síntese química , Humanos , Processos Fotoquímicos , Propofol/química , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(37): 10310-5, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573840

RESUMO

Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur's presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it-more effectively than any other amino acid-increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.


Assuntos
Proteínas de Transporte de Cátions/química , Ferro/química , Manganês/química , Metionina/química , Sequência de Aminoácidos/genética , Transporte Biológico/genética , Cálcio/química , Proteínas de Transporte de Cátions/genética , Cátions Bivalentes/química , Cobalto/química , Deinococcus/química , Transporte de Íons/genética , Metionina/genética , Especificidade por Substrato
10.
Biochim Biophys Acta Biomembr ; 1860(4): 895-908, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28993150

RESUMO

Recently, protein sequence coevolution analysis has matured into a predictive powerhouse for protein structure and function. Direct methods, which use global statistical models of sequence coevolution, have enabled the prediction of membrane and disordered protein structures, protein complex architectures, and the functional effects of mutations in proteins. The field of membrane protein biochemistry and structural biology has embraced these computational techniques, which provide functional and structural information in an otherwise experimentally-challenging field. Here we review recent applications of protein sequence coevolution analysis to membrane protein structure and function and highlight the promising directions and future obstacles in these fields. We provide insights and guidelines for membrane protein biochemists who wish to apply sequence coevolution analysis to a given experimental system.


Assuntos
Evolução Molecular , Proteínas de Membrana/química , Proteínas de Membrana/genética , Alinhamento de Sequência/métodos , Animais , Biologia Computacional/métodos , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
11.
Nature ; 492(7427): 128-32, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23135401

RESUMO

Hearing and balance use hair cells in the inner ear to transform mechanical stimuli into electrical signals. Mechanical force from sound waves or head movements is conveyed to hair-cell transduction channels by tip links, fine filaments formed by two atypical cadherins known as protocadherin 15 and cadherin 23 (refs 4, 5). These two proteins are involved in inherited deafness and feature long extracellular domains that interact tip-to-tip in a Ca(2+)-dependent manner. However, the molecular architecture of this complex is unknown. Here we combine crystallography, molecular dynamics simulations and binding experiments to characterize the protocadherin 15-cadherin 23 bond. We find a unique cadherin interaction mechanism, in which the two most amino-terminal cadherin repeats (extracellular cadherin repeats 1 and 2) of each protein interact to form an overlapped, antiparallel heterodimer. Simulations predict that this tip-link bond is mechanically strong enough to resist forces in hair cells. In addition, the complex is shown to become unstable in response to Ca(2+) removal owing to increased flexure of Ca(2+)-free cadherin repeats. Finally, we use structures and biochemical measurements to study the molecular mechanisms by which deafness mutations disrupt tip-link function. Overall, our results shed light on the molecular mechanics of hair-cell sensory transduction and on new interaction mechanisms for cadherins, a large protein family implicated in tissue and organ morphogenesis, neural connectivity and cancer.


Assuntos
Caderinas/química , Caderinas/metabolismo , Orelha Interna/fisiologia , Mecanotransdução Celular/fisiologia , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Cálcio/metabolismo , Cálcio/farmacologia , Cromatografia em Gel , Cristalografia por Raios X , Surdez/genética , Orelha Interna/citologia , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Precursores de Proteínas/genética , Sequências Repetitivas de Aminoácidos
12.
Biophys J ; 113(10): 2168-2172, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935134

RESUMO

In addition to inducing anesthesia, propofol activates a key component of the pain pathway, the transient receptor potential ankyrin 1 ion channel (TRPA1). Recent mutagenesis studies suggested a potential activation site within the transmembrane domain, near the A-967079 cavity. However, mutagenesis cannot distinguish between protein-based and ligand-based mechanisms, nor can this site explain the complex modulation by propofol. Thus more direct approaches are required to reveal potentially druggable binding sites. Here we apply photoaffinity labeling using a propofol derivative, meta-azipropofol, for direct identification of binding sites in mouse TRPA1. We confirm that meta-azipropofol activates TRPA1 like the parent anesthetic, and identify two photolabeled residues (V954 and E969) in the S6 helix. In combination with docking to closed and open state models of TRPA1, photoaffinity labeling suggested that the A-967079 cavity is a positive modulatory site for propofol. Further, the photoaffinity labeling of E969 indicated pore block as a likely mechanism for propofol inhibition at high concentrations. The direct identification of drug-binding sites clarifies the molecular mechanisms of important TRPA1 agonists, and will facilitate drug design efforts to modulate TRPA1.


Assuntos
Anestésicos/farmacologia , Marcadores de Fotoafinidade/química , Propofol/farmacologia , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/metabolismo , Animais , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Ratos
13.
Bioessays ; 37(11): 1184-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26387779

RESUMO

A new high-resolution structure of a pain-sensing ion channel, TRPA1, provides a molecular scaffold to understand channel function. Unexpected structural features include a TRP-domain helix similar to TRPV1, a novel ligand-binding site, and an unusual C-terminal coiled coil stabilized by inositol hexakisphosphate (IP6). TRP-domain helices, which structurally act as a nexus for communication between the channel gates and its other domains, may thus be a feature conserved across the entire TRP family and, possibly, other allosterically-gated channels. Similarly, the TRPA1 antagonist-binding site could also represent a druggable location in other ion channels. Combined with known TRPA1 functional properties, the structural role for IP6 leads us to propose that polyphosphate unbinding could act as a molecular kill switch for TRPA1 inactivation. Finally, although packing of the TRPA1 membrane-proximal region hints at a mechanism for electrophile sensing, the details of how TRPA1 responds to noxious reactive electrophiles and temperature await future studies.


Assuntos
Canais de Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dor/fisiopatologia , Ácido Fítico/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Ligação Proteica , Estrutura Terciária de Proteína , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
14.
Proc Natl Acad Sci U S A ; 110(23): 9553-8, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690576

RESUMO

Most transient receptor potential (TRP) channels are regulated by phosphatidylinositol-4,5-biphosphate (PIP2), although the structural rearrangements occurring on PIP2 binding are currently far from clear. Here we report that activation of the TRP vanilloid 4 (TRPV4) channel by hypotonic and heat stimuli requires PIP2 binding to and rearrangement of the cytosolic tails. Neutralization of the positive charges within the sequence (121)KRWRK(125), which resembles a phosphoinositide-binding site, rendered the channel unresponsive to hypotonicity and heat but responsive to 4α-phorbol 12,13-didecanoate, an agonist that binds directly to transmembrane domains. Similar channel response was obtained by depletion of PIP2 from the plasma membrane with translocatable phosphatases in heterologous expression systems or by activation of phospholipase C in native ciliated epithelial cells. PIP2 facilitated TRPV4 activation by the osmotransducing cytosolic messenger 5'-6'-epoxyeicosatrienoic acid and allowed channel activation by heat in inside-out patches. Protease protection assays demonstrated a PIP2-binding site within the N-tail. The proximity of TRPV4 tails, analyzed by fluorescence resonance energy transfer, increased by depleting PIP2 mutations in the phosphoinositide site or by coexpression with protein kinase C and casein kinase substrate in neurons 3 (PACSIN3), a regulatory molecule that binds TRPV4 N-tails and abrogates activation by cell swelling and heat. PACSIN3 lacking the Bin-Amphiphysin-Rvs (F-BAR) domain interacted with TRPV4 without affecting channel activation or tail rearrangement. Thus, mutations weakening the TRPV4-PIP2 interacting site and conditions that deplete PIP2 or restrict access of TRPV4 to PIP2--in the case of PACSIN3--change tail conformation and negatively affect channel activation by hypotonicity and heat.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Cátion TRPV/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Análise de Variância , Cálcio/metabolismo , Células Cultivadas , Clonagem Molecular , Citoplasma/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Técnicas de Patch-Clamp , Forbóis/metabolismo , Estrutura Terciária de Proteína
15.
J Neurosci ; 33(10): 4395-404, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23467356

RESUMO

In hair cells of the inner ear, sound or head movement increases tension in fine filaments termed tip links, which in turn convey force to mechanosensitive ion channels to open them. Tip links are formed by a tetramer of two cadherin proteins: protocadherin 15 (PCDH15) and cadherin 23 (CDH23), which have 11 and 27 extracellular cadherin (EC) repeats, respectively. Mutations in either protein cause inner ear disorders in mice and humans. We showed recently that these two cadherins bind tip-to-tip in a "handshake" mode that involves the EC1 and EC2 repeats of both proteins. However, a paucity of appropriate animal models has slowed our understanding both of the interaction and of how mutations of residues within the predicted interface compromise tip link integrity. Here, we present noddy, a new mouse model for hereditary deafness. Identified in a forward genetic screen, noddy homozygotes lack inner ear function. Mapping and sequencing showed that noddy mutant mice harbor an isoleucine-to-asparagine (I108N) mutation in the EC1 repeat of PCDH15. Residue I108 interacts with CDH23 EC2 in the handshake and its mutation impairs the interaction in vitro. The noddy mutation allowed us to determine the consequences of blocking the handshake in vivo: tip link formation and bundle morphology are disrupted, and mechanotransduction channels fail to remain open at rest. These results offer new insights into the interaction between PCDH15 and CDH23 and help explain the etiology of human deafness linked to mutations in the tip-link interface.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Doenças do Labirinto , Mecanotransdução Celular/fisiologia , Mutação de Sentido Incorreto/genética , Precursores de Proteínas/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas Relacionadas a Caderinas , Cálcio/metabolismo , Células Cultivadas , Eletroencefalografia , Etilnitrosoureia/farmacologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Genótipo , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/ultraestrutura , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Doenças do Labirinto/induzido quimicamente , Doenças do Labirinto/genética , Doenças do Labirinto/patologia , Doenças do Labirinto/fisiopatologia , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Mutagênicos/farmacologia , Mutação de Sentido Incorreto/efeitos dos fármacos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Compostos de Piridínio , Compostos de Amônio Quaternário
16.
Handb Exp Pharmacol ; 223: 963-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24961976

RESUMO

Membrane proteins remain challenging targets for structural biologists, despite recent technical developments regarding sample preparation and structure determination. We review recent progress towards a structural understanding of TRP channels and the techniques used to that end. We discuss available low-resolution structures from electron microscopy (EM), X-ray crystallography, and nuclear magnetic resonance (NMR) and review the resulting insights into TRP channel function for various subfamily members. The recent high-resolution structure of TRPV1 is discussed in more detail in Chapter 11. We also consider the opportunities and challenges of using the accumulating structural information on TRPs and homologous proteins for deducing full-length structures of different TRP channel subfamilies, such as building homology models. Finally, we close by summarizing the outlook of the "holy grail" of understanding in atomic detail the diverse functions of TRP channels.


Assuntos
Canais de Potencial de Receptor Transitório/química , Motivos de Aminoácidos , Animais , Cálcio/metabolismo , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica
17.
Handb Exp Pharmacol ; 223: 991-1004, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24961977

RESUMO

The first high-resolution structures of a near-full-length TRP channel were recently described, structures of the noxious heat receptor TRPV1 in the absence or presence of vanilloid agonists and a spider toxin. Here we briefly review the salient features, including the overall architecture, agonist binding sites, and conformational changes related to channel pore gating. We also discuss some of the structures' implications for the TRP channel family and a few of the many questions still left unanswered.


Assuntos
Canais de Cátion TRPV/química , Animais , Microscopia Crioeletrônica , Humanos , Conformação Proteica , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/fisiologia
18.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352416

RESUMO

Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.

19.
Cell Rep ; 43(4): 114035, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573859

RESUMO

Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.


Assuntos
Bombyx , Animais , Ligantes , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Sítios de Ligação , Sequência de Aminoácidos , Modelos Moleculares , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/química , Receptores Odorantes/metabolismo , Receptores Odorantes/química
20.
Comput Struct Biotechnol J ; 23: 473-482, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38261868

RESUMO

TRP channels are important pharmacological targets in physiopathology. TRPV2 plays distinct roles in cardiac and neuromuscular function, immunity, and metabolism, and is associated with pathologies like muscular dystrophy and cancer. However, TRPV2 pharmacology is unspecific and scarce at best. Using in silico similarity-based chemoinformatics we obtained a set of 270 potential hits for TRPV2 categorized into families based on chemical nature and similarity. Docking the compounds on available rat TRPV2 structures allowed the clustering of drug families in specific ligand binding sites. Starting from a probenecid docking pose in the piperlongumine binding site and using a Gaussian accelerated molecular dynamics approach we have assigned a putative probenecid binding site. In parallel, we measured the EC50 of 7 probenecid derivatives on TRPV2 expressed in Pichia pastoris using a novel medium-throughput Ca2+ influx assay in yeast membranes together with an unbiased and unsupervised data analysis method. We found that 4-(piperidine-1-sulfonyl)-benzoic acid had a better EC50 than probenecid, which is one of the most specific TRPV2 agonists to date. Exploring the TRPV2-dependent anti-hypertensive potential in vivo, we found that 4-(piperidine-1-sulfonyl)-benzoic acid shows a sex-biased vasodilator effect producing larger vascular relaxations in female mice. Overall, this study expands the pharmacological toolbox for TRPV2, a widely expressed membrane protein and orphan drug target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA