Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 29(7): 1176-91, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20168298

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C-terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self-oligomerization. Dimerization-defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM-endoplasmic reticulum (ER) junctions but could still function as ER Ca(2+)-release channels. Expression of dimerization-defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C-terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER-localized PC2 channels. Mutations that affect PC2 C-terminal homo- and heteromerization are the likely molecular basis of cyst formation in ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/química , Canais de Cátion TRPP/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Dimerização , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Expressão Gênica , Humanos , Rim/patologia , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Canais de Cátion TRPP/genética , Técnicas do Sistema de Duplo-Híbrido , Peixe-Zebra/genética
2.
Biochem Biophys Res Commun ; 411(2): 329-34, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21726526

RESUMO

Mutations in the neuronal Nav1.1 voltage-gated sodium channel are responsible for mild to severe epileptic syndromes. The ubiquitous calcium sensor calmodulin (CaM) bound to rat brain Nav1.1 and to the human Nav1.1 channel expressed by a stably transfected HEK-293 cell line. The C-terminal region of the channel, as a fusion protein or in the yeast two-hybrid system, interacted with CaM via a consensus C-terminal motif, the IQ domain. Patch clamp experiments on HEK1.1 cells showed that CaM overexpression increased peak current in a calcium-dependent way. CaM had no effect on the voltage-dependence of fast inactivation, and accelerated the inactivation kinetics. Elevating Ca(++) depolarized the voltage-dependence of fast inactivation and slowed down the fast inactivation kinetics, and for high concentrations this effect competed with the acceleration induced by CaM alone. Similarly, the depolarizing action of calcium antagonized the hyperpolarizing shift of the voltage-dependence of activation due to CaM overexpression. Fluorescence spectroscopy measurements suggested that Ca(++) could bind the Nav1.1 C-terminal region with micromolar affinity.


Assuntos
Encéfalo/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Células HEK293 , Humanos , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Ratos , Canais de Sódio/genética , Espectrometria de Fluorescência , Técnicas do Sistema de Duplo-Híbrido
3.
Cell Rep ; 11(7): 1067-78, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25959819

RESUMO

Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9(-/-) neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions.


Assuntos
Hiperalgesia/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Percepção da Dor/fisiologia , Sensação Térmica/fisiologia , Animais , Temperatura Baixa , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
4.
Pain ; 153(2): 473-484, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22172548

RESUMO

Menthol is a natural compound of plant origin known to produce cool sensation via the activation of the TRPM8 channel. It is also frequently part of topical analgesic drugs available in a pharmacy, although its mechanism of action is still unknown. Compelling evidence indicates that voltage-gated Na(+) channels are critical for experiencing pain sensation. We tested the hypothesis that menthol may block voltage-gated Na(+) channels in dorsal root ganglion (DRG) neurons. By use of a patch clamp, we evaluated the effects of menthol application on tetrodotoxin (TTX)-resistant Nav1.8 and Nav1.9 channel subtypes in DRG neurons, and on TTX-sensitive Na(+) channels in immortalized DRG neuron-derived F11 cells. The results indicate that menthol inhibits Na(+) channels in a concentration-, voltage-, and frequency-dependent manner. Menthol promoted fast and slow inactivation states, causing use-dependent depression of Na(+) channel activity. In current clamp recordings, menthol inhibited firing at high-frequency stimulation with minimal effects on normal neuronal activity. We found that low concentrations of menthol cause analgesia in mice, relieving pain produced by a Na(+) channel-targeting toxin. We conclude that menthol is a state-selective blocker of Nav1.8, Nav1.9, and TTX-sensitive Na(+) channels, indicating a role for Na(+) channel blockade in the efficacy of menthol as topical analgesic compound.


Assuntos
Analgésicos/farmacologia , Mentol/farmacologia , Dor/tratamento farmacológico , Dor/fisiopatologia , Canais de Sódio/metabolismo , Animais , Linhagem Celular Tumoral , Células Híbridas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Inibição Neural/fisiologia , Neuroblastoma/metabolismo , Neuroblastoma/fisiopatologia , Dor/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar , Canais de Sódio/fisiologia
5.
Pain ; 142(3): 225-235, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19217209

RESUMO

Orphenadrine is a drug acting on multiple targets, including muscarinic, histaminic, and NMDA receptors. It is used in the treatment of Parkinson's disease and in musculoskeletal disorders. It is also used as an analgesic, although its mechanism of action is still unknown. Both physiological and pharmacological results have demonstrated a critical role for voltage-gated sodium channels in many types of chronic pain syndromes. We tested the hypothesis that orphenadrine may block voltage-gated sodium channels. By using patch-clamp experiments, we evaluated the effects of the drug on whole-cell sodium currents in HEK293 cells expressing the skeletal muscle (Nav1.4), cardiac (Nav1.5) and neuronal (Nav1.1 and Nav1.7) subtypes of human sodium channels, as well as on whole-cell tetrodotoxin (TTX)-resistant sodium currents likely conducted by Nav1.8 and Nav1.9 channel subtypes in primary culture of rat DRG sensory neurons. The results indicate that orphenadrine inhibits sodium channels in a concentration-, voltage- and frequency-dependent manner. By using site-directed mutagenesis, we further show that orphenadrine binds to the same receptor as the local anesthetics. Orphenadrine affinities for resting and inactivated sodium channels were higher compared to those of known sodium channels blockers, such as mexiletine and flecainide. Low, clinically relevant orphenadrine concentration produces a significant block of Nav1.7, Nav1.8, and Nav1.9 channels, which are critical for experiencing pain sensations, indicating a role for sodium channel blockade in the clinical efficacy of orphenadrine as analgesic compound. On the other hand, block of Nav1.1 and Nav1.5 may contribute to the proconvulsive and proarrhythmic adverse reactions, especially observed during overdose.


Assuntos
Analgésicos/administração & dosagem , Gânglios Espinais/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Orfenadrina/administração & dosagem , Canais de Sódio/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Canais de Sódio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA