Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Pathog ; 17(8): e1009791, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370789

RESUMO

In many Gram-positive bacteria, the redox-sensing transcriptional repressor Rex controls central carbon and energy metabolism by sensing the intra cellular balance between the reduced and oxidized forms of nicotinamide adenine dinucleotide; the NADH/NAD+ ratio. Here, we report high-resolution crystal structures and characterization of a Rex ortholog (Gbs1167) in the opportunistic pathogen, Streptococcus agalactiae, also known as group B streptococcus (GBS). We present structures of Rex bound to NAD+ and to a DNA operator which are the first structures of a Rex-family member from a pathogenic bacterium. The structures reveal the molecular basis of DNA binding and the conformation alterations between the free NAD+ complex and DNA-bound form of Rex. Transcriptomic analysis revealed that GBS Rex controls not only central metabolism, but also expression of the monocistronic rex gene as well as virulence gene expression. Rex enhances GBS virulence after disseminated infection in mice. Mechanistically, NAD+ stabilizes Rex as a repressor in the absence of NADH. However, GBS Rex is unique compared to Rex regulators previously characterized because of its sensing mechanism: we show that it primarily responds to NAD+ levels (or growth rate) rather than to the NADH/NAD+ ratio. These results indicate that Rex plays a key role in GBS pathogenicity by modulating virulence factor gene expression and carbon metabolism to harvest nutrients from the host.


Assuntos
Proteínas de Bactérias/genética , Produtos do Gene rex/genética , NAD/deficiência , Regulon , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/patogenicidade , Virulência , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Feminino , Perfilação da Expressão Gênica , Produtos do Gene rex/química , Produtos do Gene rex/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Conformação Proteica , Infecções Estreptocócicas/metabolismo
2.
Appl Environ Microbiol ; 87(24): e0107921, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613757

RESUMO

Acetoin, 3-hydroxyl,2-butanone, is extensively used as a flavor additive in food products. This volatile compound is produced by the dairy bacterium Lactococcus lactis when aerobic respiration is activated by haem addition, and comprises ∼70% of carbohydrate degradation products. Here we investigate the targets of acetoin toxicity, and determine how acetoin impacts L. lactis physiology and survival. Acetoin caused damage to DNA and proteins, which related to reactivity of its keto group. Acetoin stress was reflected in proteome profiles, which revealed changes in lipid metabolic proteins. Acetoin provoked marked changes in fatty acid composition, with massive accumulation of cycC19:0 cyclopropane fatty acid at the expense of its unsaturated C18:1 fatty acid precursor. Deletion of the cfa gene, encoding the cycC19:0 synthase, sensitized cells to acetoin stress. Acetoin-resistant transposon mutagenesis revealed a hot spot in the high affinity phosphate transporter operon pstABCDEF, which is known to increase resistance to multiple stresses. This work reveals the causes and consequences of acetoin stress on L. lactis, and may facilitate control of lactic acid bacteria production in technological processes. IMPORTANCE Acetoin, 3-hydroxyl,2-butanone, has diverse uses in chemical industry, agriculture, and dairy industries as a volatile compound that generates aromas. In bacteria, it can be produced in high amount by Lactococcus lactis when it grows under aerobic respiration. However, acetoin production can be toxic and detrimental for growth and/or survival. Our results showed that it damages DNA and proteins via its keto group. We also showed that acetoin modifies membrane fatty acid composition with the production of cyclopropane C19:0 fatty acid at the expense of an unsaturated C18:1. We isolated mutants more resistant to acetoin than the wild-type strain. All of them mapped to a single locus pstABCDEF operon, suggesting a simple means to limit acetoin toxicity in dairy bacteria and to improve its production.


Assuntos
Acetoína , Lactococcus lactis , Acetoína/metabolismo , Acetoína/toxicidade , Ácidos Graxos/metabolismo , Aromatizantes , Microbiologia Industrial , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
3.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30030222

RESUMO

Lactococcus lactis is the main bacterium used for food fermentation and is a candidate for probiotic development. In addition to fermentation growth, supplementation with heme under aerobic conditions activates a cytochrome oxidase, which promotes respiration metabolism. In contrast to fermentation, in which cells consume energy to produce mainly lactic acid, respiration metabolism dramatically changes energy metabolism, such that massive amounts of acetic acid and acetoin are produced at the expense of lactic acid. Our goal was to investigate the metabolic changes that correlate with significantly improved growth and survival during respiration growth. Using transcriptional time course analyses, mutational analyses, and promoter-reporter fusions, we uncover two main pathways that can explain the robust growth and stability of respiration cultures. First, the acetate pathway contributes to biomass yield in respiration without affecting medium pH. Second, the acetoin pathway allows cells to cope with internal acidification, which directly affects cell density and survival in stationary phase. Our results suggest that manipulation of these pathways will lead to fine-tuning respiration growth, with improved yield and stability.IMPORTANCELactococcus lactis is used in food and biotechnology industries for its capacity to produce lactic acid, aroma, and proteins. This species grows by fermentation or by an aerobic respiration metabolism when heme is added. Whereas fermentation leads mostly to lactic acid production, respiration produces acetate and acetoin. Respiration growth leads to greatly improved bacterial growth and survival. Our study aims at deciphering mechanisms of respiration metabolism that have a major impact on bacterial physiology. Our results showed that two metabolic pathways (acetate and acetoin) are key elements of respiration. The acetate pathway contributes to biomass yield. The acetoin pathway is needed for pH homeostasis, which affects metabolic activities and bacterial viability in stationary phase. This study clarifies key metabolic elements that are required to maintain the growth advantage conferred by respiration metabolism and has potential uses in strain optimization for industrial and biomedical applications.


Assuntos
Acetatos/metabolismo , Acetoína/metabolismo , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Metabolismo Energético , Fermentação , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Lactococcus lactis/genética , Redes e Vias Metabólicas
4.
Mol Microbiol ; 102(1): 81-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27328751

RESUMO

Aerobic respiration metabolism in Group B Streptococcus (GBS) is activated by exogenous heme and menaquinone. This capacity enhances resistance of GBS to acid and oxidative stress and improves its survival. In this work, we discovered that GBS is able to respire in the presence of heme and 1,4-dihydroxy-2-naphthoic acid (DHNA). DHNA is a biosynthetic precursor of demethylmenaquinone (DMK) in many bacterial species. A GBS gene (gbs1789) encodes a homolog of the MenA 1,4-dihydroxy-2-naphthoate prenyltransferase enzyme, involved in the synthesis of demethylmenaquinone. In this study, we showed that gbs1789 is involved in the biosynthesis of long-chain demethylmenaquinones (DMK-10). The Δgbs1789 mutant cannot respire in the presence of heme and DHNA, indicating that endogenously synthesized DMKs are cofactors of the GBS respiratory chain. We also found that isoprenoid side chains from GBS DMKs are produced by the protein encoded by the gbs1783 gene, since this gene can complement an Escherichia coli ispB mutant defective for isoprenoids chain synthesis. In the gut or vaginal microbiote, where interspecies metabolite exchanges occur, this partial DMK biosynthetic pathway can be important for GBS respiration and survival in different niches.


Assuntos
Benzoquinonas/metabolismo , Streptococcus agalactiae/metabolismo , Vitamina K 2/metabolismo , Vias Biossintéticas , Heme/metabolismo , Redes e Vias Metabólicas , Naftóis/metabolismo , Naftóis/farmacologia , Streptococcus agalactiae/genética , Vitamina K 2/análogos & derivados
5.
Mol Microbiol ; 93(4): 823-33, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25040434

RESUMO

Lactococcus lactis is a fermenting Gram-positive bacterium widely used for production of dairy products. Lacking haem biosynthesis genes, L. lactis can still shift to an energetically favourable respiratory metabolism by activating a terminal cytochrome bd oxidase when haem is added to an aerated culture. Haem intracellular homeostasis is mediated by the hrtRBA operon encoding the conserved membrane HrtBA haem efflux permease and the unique intracellular haem sensor and regulator, HrtR. Here we report that membrane-associated menaquinones (MK) favour the accumulation of reduced haem in membranes. An oxidative environment, provided by oxygen, prevents and reverses haemin reduction by MK and thus limits haem accumulation in membranes. HrtBA counteracts MK-dependent membrane retention of excess haem in membrane, suggesting direct efflux from this compartment. Moreover, both HrtBA and MK-mediated reduction have a strong impact on haem intracellular pools, as determined via HrtR haem sensor induction, suggesting that intracellular haem acquisition is controlled at the membrane level without the need for dedicated import systems. Our conclusions lead to a new hypothesis of haem acquisition and regulation in which HrtBA and the bacterial membrane have central roles in L. lactis.


Assuntos
Proteínas de Bactérias/metabolismo , Heme/metabolismo , Lactococcus lactis/metabolismo , Vitamina K 2/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citosol/química , Homeostase , Oxirredução
6.
BMC Microbiol ; 15: 246, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26519082

RESUMO

BACKGROUND: Due to its extraordinary chemical properties, the cysteine amino acid residue is often involved in protein folding, electron driving, sensing stress, and binding metals such as iron or zinc. Lactococcus lactis, a Gram-positive bacterium, houses around one hundred cysteine-rich proteins (with the CX2C motif) in the cytoplasm, but only a few in the membrane. RESULTS: In order to understand the role played by this motif we focused our work on two membrane proteins of unknown function: Llmg_0524 and Llmg_0526. Each of these proteins has two CX2C motifs separated by ten amino-acid residues (CX2CX10CX2C). Together with a short intervening gene (llmg_0525), the genes of these two proteins form an operon, which is induced only during the early log growth phase. In both proteins, we found that the CX2CX10CX2C motif chelated a zinc ion via its cysteine residues, but the sphere of coordination was remarkably different in each case. In the case of Llmg_0524, two of the four cysteines were ligands of a zinc ion whereas in Llmg_0526, all four residues were involved in binding zinc. In both proteins, the cysteine-zinc complex was very stable at 37 °C or in the presence of oxidative agents, suggesting a probable role in protein stability. We found that the complete deletion of llmg_0524 increased the sensitivity of the mutant to cumene hydroperoxide whereas the deletion of the cysteine motif in Llmg_0524 resulted in a growth defect. The latter mutant was much more resistant to lysozyme than other strains. CONCLUSIONS: Our data suggest that the CX2CX10CX2C motif is used to chelate a zinc ion but we cannot predict the number of cysteine residue involved as ligand of metal. Although no other motif is present in sequence to identify roles played by these proteins, our results indicate that Llmg_0524 contributes to the cell wall integrity.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Lactococcus lactis/metabolismo , Proteínas de Membrana/metabolismo , Zinco/metabolismo , Proteínas de Bactérias/química , Derivados de Benzeno/farmacologia , Sítios de Ligação , Cisteína/química , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/crescimento & desenvolvimento , Proteínas de Membrana/química , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína
7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2937-49, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25372684

RESUMO

The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.


Assuntos
Proteínas de Bactérias/química , Endonucleases/química , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/química , Fatores de Virulência/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Endonucleases/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Conformação Proteica , Alinhamento de Sequência , Streptococcus agalactiae/enzimologia , Streptococcus agalactiae/genética , Fatores de Virulência/genética
8.
Mol Microbiol ; 89(3): 518-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23772975

RESUMO

Most bacteria of the genus Streptococcus are opportunistic pathogens, and some of them produce extracellular DNases, which may be important for virulence. Genome analyses of Streptococcus agalactiae (GBS) neonate isolate NEM316 revealed the presence of seven genes putatively encoding secreted DNases, although their functions, if any, are unknown. In this study, we observed that respiration growth of GBS led to the extracellular accumulation of a putative nuclease, identified as being encoded by the gbs0661 gene. When overproduced in Lactococcus lactis, the protein was found to be a divalent cation-requiring, pH-stable and heat-stable nuclease that we named Nuclease A (NucA). Substitution of the histidine(148) by alanine reduced nuclease activity of the GBS wild-type strain, indicating that NucA is the major nuclease ex vivo. We determined that GBS is able to degrade the DNA matrix comprising the neutrophil extracellular trap (NET). The nucA(H148A) mutant was impaired for this function, implicating NucA in the virulence of GBS. In vivo infection studies confirmed that NucA is required for full infection, as the mutant strain allowed increased bacterial clearance from lung tissue and decreased mortality in infected mice. These results show that NucA is involved in NET escape and is needed for full virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Desoxirribonucleases/metabolismo , Neutrófilos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/patogenicidade , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Desoxirribonucleases/genética , Humanos , Evasão da Resposta Imune , Pulmão/microbiologia , Camundongos , Dados de Sequência Molecular , Neutrófilos/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/enzimologia , Streptococcus agalactiae/genética , Receptor Toll-Like 9/imunologia , Virulência
9.
J Biol Chem ; 287(7): 4752-8, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22084241

RESUMO

Most commensal and food bacteria lack heme biosynthesis genes. For several of these, the capture of environmental heme is a means of activating aerobic respiration metabolism. Our previous studies in the Gram-positive bacterium Lactococcus lactis showed that heme exposure strongly induced expression of a single operon, called here hrtRBA, encoding an ortholog of the conserved membrane hrt (heme-regulated transporter) and a unique transcriptional regulator that we named HrtR. We show that HrtR expressed as a fusion protein is a heme-binding protein. Heme iron interaction with HrtR is non-covalent, hexacoordinated, and involves two histidines, His-72 and His-149. HrtR specifically binds a 15-nt palindromic sequence in the hrtRBA promoter region, which is needed for hrtRBA repression. HrtR-DNA binding is abolished by heme addition, which activates expression of the HrtB-HrtA (HrtBA) transporter in vitro and in vivo. The use of HrtR as an intracellular heme sensor appears to be conserved among numerous commensal bacteria, in contrast with numerous Gram-positive pathogens that use an extracellular heme-sensing system, HssRS, to regulate hrt. Finally, we show for the first time that HrtBA permease controls heme toxicity by its direct and specific efflux. The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Lactococcus lactis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Transporte Biológico Ativo/fisiologia , Proteínas de Transporte/genética , Heme/genética , Proteínas Ligantes de Grupo Heme , Hemeproteínas/genética , Lactococcus lactis/genética , Proteínas de Membrana Transportadoras/genética , Óperon/fisiologia
10.
Proteomics ; 12(11): 1792-805, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623348

RESUMO

Lactococcus lactis, one of the most commonly used dairy starters, is often subjected to oxidative stress in cheese manufacturing. A comparative proteomic analysis was performed to identify the molecular modifications responsible for the robustness of three spontaneous H(2)O(2)-resistant (SpOx) strains. In the parental strain, glyceraldehyde-3-phosphate deshydrogenase (GAPDH) activity is ensured by GapB and the second GAPDH GapA is not produced in standard growth conditions. We showed that GapA was overproduced in the highly resistant SpOx2 and SpOx3 mutants. Its overproduction in the MG1363 strain led to an increased H(2)O(2) resistance of exponential growing cells. Upon H(2)O(2) exposure, GapB was fully inactivated by oxidation in the parental strain. In SpOx mutants, it partly remained in the reduced form sustaining partially GAPDH activity. The analysis of gapA disruption in these SpOx strains indicated that additional unraveled mechanisms likely contribute to the resistance phenotype. In the SpOx1 mutant, the arginine deiminase pathway was found to be upregulated and disruption of arcA or arcB genes abolished H(2)O(2) resistance. We concluded that arginine consumption was directly responsible for the SpOx1 phenotype. Finally, these results suggest that sustaining energy supply is a major way of leading to oxidative stress resistance in L. lactis.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Peróxido de Hidrogênio/farmacologia , Hidrolases/metabolismo , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Hidrolases/genética , Lactococcus lactis/genética , Estresse Oxidativo/genética , Proteômica , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA