Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(29): 11399-11409, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35797720

RESUMO

The interplay between a topological electronic structure and magnetism may result in intricate physics. In this work, we describe a case of rather peculiar coexistence or competition of several magnetic phases below seemingly single antiferromagnetic transition in LnSbTe (Ln = Ho and Tb) topological semimetals, the magnetic members of the ZrSiS/PbFCl structure type (space group P4/nmm). Neutron diffraction experiments reveal a complex multi-step order below TN = 3.8 K (Ln = Ho) and TN = 6.4 K (Ln = Tb). Magnetic phases can be described using four propagation vectors k1 = (1/2 0 0) and k2 = (1/2 0 1/4) at a base temperature of 1.7 K, which transform into incommensurate vectors k1' = (1/2 - δ 0 0) and k3 = (1/2 - δ 0 1/2) at elevated temperatures in both compounds. Together with the refined models of magnetic structures, we present the group theoretical analysis of magnetic symmetry of the proposed solutions. These results prompt further investigations of the relation between the electronic structure of those semimetals and the determined antiferromagnetic ordering existing therein.

2.
Chemistry ; 27(19): 5944-5955, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319376

RESUMO

The mechanism for the mechanochemical synthesis of (C(NH2 )3 )3 PbI5 3 and (C(NH2 )3 )4 PbI6 4 and their conversion into each other is presented. We investigated the synthesis of 3 at different frequencies and energies using in situ powder X-ray diffraction. By splitting the reaction into single parts we could prove that the formation of 3 is simply dependent on the energy and mixing speed. The nucleation of 4 instead is slightly negative dependent on the energy but dependent on the mixing speed, while its growth is mostly independent of any influence. We were able to influence the reaction pathways by seeding the mixture with a small amount of powdery 4. The formation of 4 is very likely an auto-catalytic process. 3 instead is metastable. It can be stabilized by energy, which beside mechanochemistry can also be achieved by temperature. The results showcases the complex nature of mechanochemical reactions.

3.
Nat Commun ; 15(1): 1658, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395887

RESUMO

Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention, yet their origin remains a topic of debate. The discovery of ScV6Sn6, a bilayer kagome metal featuring an intriguing [Formula: see text] CDW order, offers a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering and density functional theory to investigate the electronic structure and phonon modes of ScV6Sn6. We identify topologically nontrivial surface states and multiple van Hove singularities (VHSs) in the vicinity of the Fermi level, with one VHS aligning with the in-plane component of the CDW vector near the [Formula: see text] point. Additionally, Raman measurements indicate a strong electron-phonon coupling, as evidenced by a two-phonon mode and new emergent modes. Our findings highlight the fundamental role of lattice degrees of freedom in promoting the CDW in ScV6Sn6.

4.
Materials (Basel) ; 16(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37109886

RESUMO

The objective of this work is to review and assess the potential of MgB4O7:Ce,Li to fill in the gaps where the need for a new material for optically stimulated luminescence (OSL) dosimetry has been identified. We offer a critical assessment of the operational properties of MgB4O7:Ce,Li for OSL dosimetry, as reviewed in the literature and complemented by measurements of thermoluminescence spectroscopy, sensitivity, thermal stability, lifetime of the luminescence emission, dose response at high doses (>1000 Gy), fading and bleachability. Overall, compared with Al2O3:C, for example, MgB4O7:Ce,Li shows a comparable OSL signal intensity following exposure to ionizing radiation, a higher saturation limit (ca 7000 Gy) and a shorter luminescence lifetime (31.5 ns). MgB4O7:Ce,Li is, however, not yet an optimum material for OSL dosimetry, as it exhibits anomalous fading and shallow traps. Further optimization is therefore needed, and possible avenues of investigation encompass gaining a better understanding of the roles of the synthesis route and dopants and of the nature of defects.

5.
Commun Phys ; 6(1): 223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665398

RESUMO

The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn5 and other Ce-based heavy fermion materials, depends strongly on the efficiency with which f electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce3+ (4f1, J = 5/2) with Sm3+ (4f5, J = 5/2), we show that a combination of the crystal electric field and on-site Coulomb repulsion causes SmCoIn5 to exhibit a Γ7 ground state similar to CeCoIn5 with multiple f electrons. We show that with this single-ion ground state, SmCoIn5 exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of f holes below a temperature scale set by the crystal field, Tv ≈ 60 K. Our result provides evidence that in the case of many f electrons, the crystal field remains the dominant tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of "115" materials.

6.
Sci Adv ; 8(43): eabq6589, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306356

RESUMO

Crystalline symmetry is a defining factor of the electronic band topology in solids, where many-body interactions often induce a spontaneous breaking of symmetry. Superconductors lacking an inversion center are among the best systems to study such effects or even to achieve topological superconductivity. Here, we demonstrate that TRuSi materials (with T a transition metal) belong to this class. Their bulk normal states behave as three-dimensional Kramers nodal-line semimetals, characterized by large antisymmetric spin-orbit couplings and by hourglass-like dispersions. Our muon-spin spectroscopy measurements show that certain TRuSi compounds spontaneously break the time-reversal symmetry at the superconducting transition, while unexpectedly showing a fully gapped superconductivity. Their unconventional behavior is consistent with a unitary (s + ip) pairing, reflecting a mixture of spin singlets and spin triplets. By combining an intrinsic time-reversal symmetry-breaking superconductivity with nontrivial electronic bands, TRuSi compounds provide an ideal platform for investigating the rich interplay between unconventional superconductivity and the exotic properties of Kramers nodal-line/hourglass fermions.

7.
Materials (Basel) ; 14(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947489

RESUMO

Properties of FeTe0.65Se0.35 single crystals, with the onset of critical temperature (Tconset) at 15.5 K, were modified via hydrogenation performed for 10-90 h, at temperatures ranging from 20 to 250 °C. It was found that the tetragonal matrix became unstable and crystal symmetry lowered for the samples hydrogenated already at 200 °C. However, matrix symmetry was not changed and the crystal was not destroyed after hydrogenation at 250 °C. Bulk Tcbulk, determined at the middle of the superconducting transition, which is equal to 12-13 K for the as grown FeTe0.65Se0.35, rose by more than 1 K after hydrogenation. The critical current density studied in magnetic field up to 70 kOe increased 4-30 times as a consequence of hydrogenation at 200 °C for 10 h. Electron paramagnetic resonance measurements also showed higher values of Tcbulk for hydrogenated crystals. Thermal diffusion of hydrogen into the crystals causes significant structural changes, leads to degeneration of crystal quality, and significantly alters superconducting properties. After hydrogenation, a strong correlation was noticed between the structural changes and changes in the parameters characterizing the superconducting state.

8.
Nat Commun ; 11(1): 3056, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546839

RESUMO

A state of matter with a multi-component order parameter can give rise to vestigial order. In the vestigial phase, the primary order is only partially melted, leaving a remaining symmetry breaking behind, an effect driven by strong classical or quantum fluctuations. Vestigial states due to primary spin and charge-density-wave order have been discussed in iron-based and cuprate materials. Here we present the observation of a partially melted superconductivity in which pairing fluctuations condense at a separate phase transition and form a nematic state with broken Z3, i.e., three-state Potts-model symmetry. Thermal expansion, specific heat and magnetization measurements of the doped topological insulators NbxBi2Se3 and CuxBi2Se3 reveal that this symmetry breaking occurs at [Formula: see text] above [Formula: see text], along with an onset of superconducting fluctuations. Thus, before Cooper pairs establish long-range coherence at Tc, they fluctuate in a way that breaks the rotational invariance at Tnem and induces a crystalline distortion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA