Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682582

RESUMO

Computational human body models (HBMs) provide the ability to explore numerous candidate injury metrics ranging from local strain based criteria to global combined criteria such as the Tibia Index. Despite these efforts, there have been relatively few studies that focus on determining predicted injury risk from HBMs based on observed postmortem human subjects (PMHS) injury data. Additionally, HBMs provide an opportunity to construct risk curves using measures that are difficult or impossible to obtain experimentally. The Global Human Body Models Consortium (GHBMC) M50-O v 6.0 lower extremity was simulated in 181 different loading conditions based on previous PMHS tests in the underbody blast (UBB) environment and 43 different biomechanical metrics were output. The Brier Metric Score were used to determine the most appropriate metric for injury risk curve development. Using survival analysis, three different injury risk curves (IRC) were developed: "any injury," "calcaneus injury," and "tibia injury." For each injury risk curve, the top three metrics selected using the Brier Metric Score were tested for significant covariates including boot use and posture. The best performing metric for the "any injury," "calcaneus injury" and "tibia injury" cases were calcaneus strain, calcaneus force, and lower tibia force, respectively. For the six different injury risk curves where covariates were considered, the presence of the boot was found to be a significant covariate reducing injury risk in five out of six cases. Posture was significant for only one curve. The injury risk curves developed from this study can serve as a baseline for model injury prediction, personal protective equipment (PPE) evaluation, and can aid in larger scale testing and experimental protocols.


Assuntos
Acidentes de Trânsito , Corpo Humano , Humanos , Extremidade Inferior , Explosões , Cadáver , Fenômenos Biomecânicos
2.
J Biomech Eng ; 142(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31701120

RESUMO

The goals of this study are to compare the lumbar spine response variance between the hybrid III, test device for human occupant restraint (THOR), and global human body models consortium simplified 50th percentile (GHBMC M50-OS) finite element models and evaluate the sensitivity of lumbar spine injury metrics to multidirectional acceleration pulses for spaceflight landing conditions. The hybrid III, THOR, and GHBMC models were positioned in a baseline posture within a generic seat with side guards and a five-point restraint system. Thirteen boundary conditions, which were categorized as loading condition variables and environmental variables, were included in the parametric study using a Latin hypercube design of experiments. Each of the three models underwent 455 simulations for a total of 1365 simulations. The hybrid III and THOR models exhibited similar lumbar compression forces. The average lumbar compression force was 45% higher for hybrid III (2.2 ± 1.5 kN) and 51% higher for THOR (2.0 ± 1.6 kN) compared to GHBMC (1.3 ± 0.9 kN). Compared to hybrid III, THOR sustained an average 64% higher lumbar flexion moment and an average 436% higher lumbar extension moment. The GHBMC model sustained much lower bending moments compared to hybrid III and THOR. Regressions revealed that lumbar spine responses were more sensitive to loading condition variables than environmental variables across all models. This study quantified the intermodel lumbar spine response variations and sensitivity between hybrid III, THOR, and GHBMC. Results improve the understanding of lumbar spine response in spaceflight landings.


Assuntos
Vértebras Lombares , Aceleração , Acidentes de Trânsito , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Suporte de Carga
3.
J Biomech Eng ; 136(11)2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25085863

RESUMO

A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact.


Assuntos
Aeronaves , Simulação por Computador , Análise de Elementos Finitos , Cabeça , Fenômenos Mecânicos , Pescoço , Rotação , Fenômenos Biomecânicos , Humanos , Masculino , Teste de Materiais
4.
J Appl Biomech ; 30(3): 471-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24345784

RESUMO

Accurate mass distribution in computational human body models is essential for proper kinematic and kinetic simulations. The purpose of this study was to investigate the mass distribution of a 50th percentile male (M50) full body finite element model (FEM) in the seated position. The FEM was partitioned into 10 segments, using segment planes constructed from bony landmarks per the methods described in previous research studies. Body segment masses and centers of gravity (CGs) of the FEM were compared with values found from these studies, which unlike the present work assumed homogeneous body density. Segment masses compared well to literature while CGs showed an average deviation of 6.0% to 7.0% when normalized by regional characteristic lengths. The discrete mass distribution of the FEM appears to affect the mass and CGs of some segments, particularly those with low-density soft tissues. The locations of the segment CGs are provided in local coordinate systems, thus facilitating comparison with other full body FEMs and human surrogates. The model provides insights into the effects of inhomogeneous mass on the location of body segment CGs.


Assuntos
Antropometria/métodos , Peso Corporal , Gravitação , Modelos Anatômicos , Modelos Biológicos , Postura/fisiologia , Simulação por Computador , Análise de Elementos Finitos , Humanos , Masculino , Pressão
5.
Artigo em Inglês | MEDLINE | ID: mdl-36622882

RESUMO

This study investigates the effect of PID controller gains, reaction time, and initial muscle activation values on active human model behavior while comparing three different control strategies. The controller gains and reaction delays were optimized using published experimental data focused on the upper extremity. The data describes the reaction of five male subjects in four tests based on two muscle states (relaxed and tensed) and two states of awareness (open and closed eye). The study used a finite element model of the left arm isolated from the Global Human Body Models Consortium (GHBMC) average male simplified occupant model for simulating biomechanical simulations. Major skeletal muscles of the arm were modeled as 1D beam elements and assigned a Hill-type muscle material. Angular position control, muscle length control, and a combination of both were used as a control strategy. The optimization process was limited to 4 variables; three Proportional-Integral-Derivative (PID) controller gains and one reaction delay time. The study assumed the relaxed and tensed condition require distinct sets of controller gains and initial activation and that the closed-eye simulations can be achieved by increasing the reaction delay parameter. A post-hoc linear combination of angle and muscle length control was used to arrive at the final combined control strategy. The premise was supported by variation in the controller gains depending on muscle state and an increase in reaction delay based on awareness. The CORA scores for open-eye relaxed, closed-eye relaxed, open-eye tensed, and closed-eye tensed was 0.95, 0.90, 0.95, and 0.77, respectively using the combined control strategy.


Assuntos
Modelos Biológicos , Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/fisiologia , Extremidade Superior , Simulação por Computador , Braço/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-36657616

RESUMO

Spinal injuries are a concern for automotive applications, requiring large parametric studies to understand spinal injury mechanisms under complex loading conditions. Finite element computational human body models (e.g. Global Human Body Models Consortium (GHBMC) models) can be used to identify spinal injury mechanisms. However, the existing GHBMC detailed models (with high computational time) or GHBMC simplified models (lacking vertebral fracture prediction capabilities) are not ideal for studying spinal injury mechanisms in large parametric studies. To overcome these limitations, a modular 50th percentile male simplified occupant model combining advantages of both the simplified and detailed models, M50-OS + DeformSpine, was developed by incorporating the deformable spine and 3D neck musculature from the detailed GHBMC model M50-O (v6.0) into the simplified GHBMC model M50-OS (v2.3). This new modular model was validated against post-mortem human subject test data in four rigid hub impactor tests and two frontal impact sled tests. The M50-OS + DeformSpine model showed good agreement with experimental test data with an average CORrelation and Analysis (CORA) score of 0.82 for the hub impact tests and 0.75 for the sled impact tests. CORA scores were statistically similar overall between the M50-OS + DeformSpine (0.79 ± 0.11), M50-OS (0.79 ± 0.11), and M50-O (0.82 ± 0.11) models (p > 0.05). This new model is computationally 6 times faster than the detailed M50-O model, with added spinal injury prediction capabilities over the simplified M50-OS model.


Assuntos
Corpo Humano , Fraturas da Coluna Vertebral , Humanos , Masculino , Análise de Elementos Finitos , Modelos Biológicos , Acidentes de Trânsito , Fenômenos Biomecânicos
7.
Front Bioeng Biotechnol ; 12: 1432911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359263

RESUMO

Traumatic injuries to the thorax are a common occurrence, and given the disparity in outcomes, injury risk is non-uniformly distributed within the population. Rib cage geometry, in conjunction with well-established biomechanical characteristics, is thought to influence injury tolerance, but quantifiable descriptions of adult rib cage shape as a whole are lacking. Here, we develop an automated pipeline to extract whole rib cage measurements from a large population and produce distributions of these measurements to assess variability in rib cage shape. Ten measurements of whole rib cage shape were collected from 1,719 individuals aged 25-45 years old including angular, linear, areal, and volumetric measures. The resulting pipeline produced measurements with a mean percent difference to manually collected measurements of 1.7% ± 1.6%, and the whole process takes 30 s per scan. Each measurement followed a normal distribution with a maximum absolute skew value of 0.43 and a maximum absolute excess kurtosis value of 0.6. Significant differences were found between the sexes (p < 0.001) in all except angular measures. Multivariate regression revealed that demographic predictors explain 29%-68% of the variance in the data. The angular measurements had the three lowest R2 values and were also the only three to have little correlation with subject stature. Unlike other measures, rib cage height had a negative correlation with BMI. Stature was the dominant demographic factor in predicting rib cage height, coronal area, sagittal area, and volume. Subject weight was the dominant demographic factor for rib cage width, depth, axial area, and angular measurements. Age was minimally important in this cohort of adults from a narrow age range. Individuals of similar height and weight had average rib cage measurements near the regression predictions, but the range of values across all subjects encompassed a large portion of their respective distributions. Our findings characterize the variability in adult rib cage geometry, including the variation within narrow demographic criteria. In future work, these can be integrated into computer aided engineering workflows to assess the influence of whole rib cage shape on the biomechanics of the adult human thorax.

8.
Traffic Inj Prev ; : 1-8, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39485708

RESUMO

OBJECTIVE: The objective of this study is to examine the effects of seatback angle, seat rotation, and impact speed on occupant kinematics and injury risk in highly automated vehicles. METHODS: The study utilized the Global Human Body Models Consortium midsize male (M50-OS+B) simplified occupant model in a simplified vehicle model (SVM) to simulate frontal crashes. The M50-OS+B model was gravity-settled and belted into the driver and left rear passenger seat. To investigate the effects of seatback angle, seat rotation, and impact speed on occupant kinematics and injury risk in frontal crashes, a design of experiments (DOE) was conducted. The DOE incorporated four seatback angles (13°, 23°, 45°, and 57.5° about vertical), four seat rotation angles (0°, 25°, 45°, and 90°), three impact speeds (25, 35, and 45 kph), and four frontal crash type configurations. All four seatback angles were used with 0° seat rotation, whereas 13° seatback angle was used with the remaining seat rotation configurations because of cabin fit considerations. Injury risks were estimated for the head, neck, shoulder, thorax, pelvis, and lower extremities for both occupants for each simulation (n=588). RESULTS: Statistically significant differences between all the groups within each independent variable category were observed based on the analysis of variance. HIC-based head injury risk and chest injury risk decreased and femur force for the driver and tibia force for the passenger increased with an increase in seatback angles. The head injury risk increased with seat rotation. All the injury risks increased with an increase in impact speed. The driver airbag was able to safeguard the driver from head injuries for all seat rotations except at 90° of seat rotation. CONCLUSION: This is the first vehicle modeling study that collectively looked at the effects of seatback angle, seat rotation, and impact speed along with the interaction of occupants on the risk of injury in frontal crashes. The rear passenger experienced higher seatbelt loads than the driver. More reclined seats decreased head and chest injury risk, but increased driver femur injury risk and rear passenger tibia injury risk. Results underscore the necessity for additional anti-submarining mechanisms and driver airbag designs adapted for the anticipated occupant positions.

9.
Ann Biomed Eng ; 52(9): 2534-2545, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38836980

RESUMO

Extravehicular activities will play a crucial role in lunar exploration on upcoming Artemis missions and may involve astronauts operating a lunar terrain vehicle (LTV) in a standing posture. This study assessed kinematic response and injury risks using an active muscle human body model (HBM) restrained in an upright posture on the LTV by simulating dynamic acceleration pulses related to lunar surface irregularities. Linear accelerations and rotational displacements of 5 lunar obstacles (3 craters; 2 rocks) over 5 slope inclinations were applied across 25 simulations. All body injury metrics were below NASA's injury tolerance limits, but compressive forces were highest in the lumbar (250-550N lumbar, tolerance: 5300N) and lower extremity (190-700N tibia, tolerance: 1350N) regions. There was a strong association between the magnitudes of body injury metrics and LTV resultant linear acceleration (ρ = 0.70-0.81). There was substantial upper body motion, with maximum forward excursion reaching 375 mm for the head and 260 mm for the chest. Our findings suggest driving a lunar rover in an upright posture for these scenarios is a low severity impact presenting low body injury risks. Injury metrics increased along the load path, from the lower body (highest metrics) to the upper body (lowest metrics). While upper body injury metrics were low, increased body motion could potentially pose a risk of injury from flail and occupant interaction with the surrounding vehicle, suit, and restraint hardware.


Assuntos
Lua , Humanos , Projetos Piloto , Atividade Extraespaçonave , Aceleração , Fenômenos Biomecânicos , Modelos Biológicos , Ferimentos e Lesões/fisiopatologia , Masculino
10.
Stapp Car Crash J ; 68: 1-13, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39250775

RESUMO

The increased use of computational human models in evaluation of safety systems demands greater attention to selected methods in coupling the model to its seated environment. This study assessed the THUMS v4.0.1 in an upright driver posture and a reclined occupant posture. Each posture was gravity settled into an NCAC vehicle model to assess model quality and HBM to seat coupling. HBM to seat contact friction and seat stiffness were varied across a range of potential inputs to evaluate over a range of potential inputs. Gravity settling was also performed with and without constraints on the pelvis to move towards the target H-Point. These combinations resulted in 18 simulations per posture, run for 800 ms. In addition, 5 crash pulse simulations (51.5 km/h delta V) were run to assess the effect of settling time on driver kinematics. HBM mesh quality and HBM to seat coupling metrics were compared at kinetically identical time points during the simulation to an end state where kinetic energy was near zero. A gravity settling time of 350 ms was found to be optimal for the upright driver posture and 290 ms for the reclined occupant posture. This suggests that reclined passengers can be settled for less time than upright passengers, potentially due to the increased contact area. The pelvis constrained approach was recommended for the upright driver posture and was not recommended for the reclined occupant posture. The recommended times were sufficient to gravity settle both postures to match the quality metrics of the 800 ms gravity settled time. Driver kinematics were found to be vary with gravity settling time. Future work will include verifying that these recommendations hold for different HBMs and test modes.

11.
Mil Med ; 189(Suppl 3): 539-545, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160804

RESUMO

INTRODUCTION: High-rate non-penetrating blunt impacts to the thorax, such as from impacts to protective equipment, can lead to a wide range of thoracic injuries. These injuries can include rib fractures, lung contusions, and abdominal organ contusions. Ovine animals have been used to study such impacts, in a variety of ways, including in silico. To properly model these impacts in silico, it is imperative that the tissues impacted are properly characterized. The objective of this study is to characterize and validate two tissues impacted that are adjacent to the point of impact-costal cartilage and hide. Heretofore, these materials have not been characterized for use in computational models despite their nearly immediate engagement in the high-rate, non-penetrating loading environment. MATERIALS AND METHODS: Ovine costal cartilage and hide samples were procured from a local abattoir following USDA regulations. Costal cartilage samples were then cut into ASTM D638 Type V tensile coupons and compressive disks for testing. The cartilage tensile coupons were tested at 150 ε/s, and the compressive samples were tested at -150 ε/s. Identical coupons and disks were then simulated in LS-Dyna using a hyperelastic material model based on test data and experimental boundary conditions. Hide samples were shaved and cut into ASTM D638 Type V tensile coupons and validated in silico using identical boundary conditions and an Ogden rubber model based on test data. RESULTS: The structural responses of costal cartilage and hide are presented and exhibit typical behavior for biological specimens. The respective model fits in LS-Dyna were a hyperelastic- based "simplified rubber" for the costal cartilage and an Ogden rubber for the hide. The costal cartilage had a mean failure strain of 0.094 ± 0.040 in tension and -0.1755 ± 0.0642 in compression. The costal cartilage was also noted to have an order-of-magnitude difference in the stresses observed experimentally between the tensile and compressive experiments. Hide had a mean failure strain of 0.2358 ± 0.1362. The energies for all three simulations showed material stability. CONCLUSIONS: Overall, we successfully characterized the mechanical behavior of the hide and costal cartilage in an ovine model. The data are intended for use in computational analogs of the ovine model for testing non-penetrating blunt impact in silico. To improve upon these models, rate sensitivity should be included, which will require additional mechanical testing.


Assuntos
Cartilagem Costal , Animais , Ovinos , Cartilagem Costal/lesões , Fenômenos Biomecânicos/fisiologia , Ferimentos não Penetrantes/fisiopatologia , Simulação por Computador
12.
Accid Anal Prev ; 190: 107182, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390749

RESUMO

OBJECTIVE: No vehicle testing standard (physical or computational) employs a mid-sized female human surrogate, despite discrepancies related to injury outcomes for female occupants amongst all vehicle users. We detail the design and preliminary validation of 50th percentile female (F50) computational human body models (HBMs) based on Global Human Body Models Consortium (GHBMC) models. METHOD: Data for the target geometry was collected as part of the initial generation of GHBMC models. Imaging, surface data, and 15 anthropomorphic measures from a living female subject (60.8 kg and 1.61 m) served as the baseline for model development. Due to the role rib cage geometry plays in biomechanical loading, rib cage morphology from secondary retrospective data was leveraged to identify an average female rib cage based on gross anatomical features. A female rib cage was selected from an existing dataset closest to the mean depth, height, and width of the set, considering only those aged 20 - 50 years. The selected subject among this secondary set also exhibited a 7th rib angle and sternum angle within 5% of the mean measurements, and within the range of previously reported studies. The GHBMC 5th percentile, small female detailed (high biofidelity) and simplified (computationally efficient) models were morphed to match the F50 subject body surface, selected bones, and mean rib cage using established thin plate spline techniques. The models were validated vs. previously published literature studies with an emphasis on rib cage response. Model data was compared to 47 channels of experimental data across four biomechanical hub simulations, two sled test simulations (one of which included all female PMHS), and two robustness simulations to test stability. Model results were mass scaled to the average of the reported corridors. Objective evaluation was conducted using CORA. IRB approval was obtained for all prospective and retrospective data collected or used. The target rib cage was selected from retrospective image data used in prior studies (n = 339 chest CT scans). RESULTS: The morphed HBMs closely matched the target geometry. The detailed and simplified models had masses and element counts of 61.2 kg and 61.8 kg, and 2.8 million and 0.3 million, respectively. The mass difference is due to a coarser mesh in the simplified model. The simplified model ran 23 times faster than the detailed model on the same hardware. Each model exhibited stability in robustness tests, and the average CORA scores were 0.80 and 0.72 in the detailed and simplified models, respectively. The models performed well in frontal impacts against PMHS corridors after mass scaling. CONCLUSIONS: Numerous recent studies underscore poorer injury outcomes for female vehicle occupants compared to males. While such outcomes are multifactorial, the average female models introduced in this work offer a novel tool within a widely used family of HBMs to reduce the outcome gap in terms of injury for all drivers. HBMs can be deployed in safety studies or in future regulatory requirements faster and more economically than a resized or newly designed ATDs aimed at the same target population.


Assuntos
Acidentes de Trânsito , Corpo Humano , Masculino , Humanos , Feminino , Estudos Prospectivos , Estudos Retrospectivos , Análise de Elementos Finitos , Modelos Biológicos , Fenômenos Biomecânicos , Simulação por Computador , Cadáver
13.
Front Bioeng Biotechnol ; 11: 1001017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761303

RESUMO

Eighty percent of bacterial infections associated with living tissue and medical devices are linked to drug-resistant biofilms, leading to lengthy and costly recoveries. Laser-induced hyperthermia can disrupt cell proliferation within biofilms and increase susceptibility to antibiotics. However, there can be bacterial survival differences dependent upon laser irradiation times, and prolonged time at elevated temperature can damage healthy tissue. The objective of this study was to use survival analysis to model the impact of temperature increases on reducing viable biofilm bacteria. In vitro biofilms of Escherichia coli were grown on silicone discs or silicone doped with photothermal poly(3,4-ethylenedioxythiophene) hydrate (PEDOT) nanotubes, and subjected to laser-induced hyperthermia, using a 3 W continuous wave laser at 800 nm for varying times. The number of colony forming units per milliliter (CFU/mL) and maximum temperature were measured after each trial. Survival analysis was employed to estimate bacterial cell proliferation post-treatment to provide a quantitative framework for future studies evaluating photothermal inactivation of bacterial biofilms. The results demonstrate the first application of survival analysis for predicting the likelihood of bacterial cell proliferation based on temperature.

14.
Traffic Inj Prev ; 24(sup1): S9-S15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267011

RESUMO

OBJECTIVE: The objectives of this study were to evaluate computationally efficient small female (54.1 kg, 149.9 cm) and midsize male (78.4 kg, 174.9 cm) models with active muscles using volunteer sled test data in a frontal-oblique loading direction and check their response in crash mitigating maneuvers using field test data. METHODS: The Global Human Body Models Consortium small female (F05-OS+Active) and midsize male (M50-OS+Active) simplified occupant models with active musculature were used in this study. The data from a total of 48 previously published sled test experiments were used to simulate a total of 16 simulations. The experimental study recorded occupant responses of six small female and six midsize male volunteers (n = 12 total) in two muscle conditions (relaxed and braced) at two acceleration pulses representing pre-crash braking (1.0 g) and a low-speed impact (2.5 g). Each model's kinematics and reaction forces were compared with experimental data. Along with sled test simulations, both of these models were simulated in abrupt braking, lane change, and turn and brake events using literature data. A total of 36 field test simulations were carried out. A CORA analysis was carried out using reaction load and displacement time-history data for sled test simulations and head CG displacement time-history was used for field test simulations. RESULTS: The occupant peak forward and lateral excursion results of both active models reasonably matched the volunteer data in the low-speed sled test simulations for both pulse severities. The differences between the active and control models were statistically significant (p-value < 0.05) based on the results of Wilcoxon signed-rank tests using peak forward and lateral excursion data. The average CORA scores calculated for the sled test (sled test: M50-OS+Active= 0.543, male control= 0.471, F05-OS+Active= 0.621, female control= 0.505) and field test (M50-OS+Active= 0.836, male control= 0.466, F05-OS+Active= 0.832, female control= 0.787) simulations were higher for active models than control. CONCLUSIONS: The responses of the F05-OS+Active and M50-OS+Active models were better than control models based on overall CORA scores calculated using both sled and field tests. The results highlight their ability to predict occupant kinematics in crash-mitigating maneuvers and low-speed impacts in the frontal, lateral and frontal-oblique directions.


Assuntos
Aceleração , Acidentes de Trânsito , Humanos , Masculino , Feminino , Músculos/fisiologia , Fenômenos Biomecânicos , Corpo Humano
15.
Ann Biomed Eng ; 51(2): 430-442, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36018394

RESUMO

A sensitivity analysis for loading conditions and muscle deconditioning on astronaut response for spaceflight transient accelerations was carried out using a mid-size male human body model with active musculature. The model was validated in spaceflight-relevant 2.5-15 g loading magnitudes in seven volunteer tests, showing good biofidelity (CORA: 0.69). Sensitivity analysis was carried out in simulations varying pulse magnitude (5, 10, and 15 g), rise time (32.5 and 120 ms), and direction (10 directions: frontal, rear, vertical, lateral, and their combination) along with muscle size change (± 15% change) and responsiveness (pre-braced, relaxed, vs. delayed response) changes across 600 simulations. Injury metrics were most sensitive to the loading direction (50%, partial-R2) and least sensitive to muscle size changes (0.2%). The pulse magnitude also had significant effect on the injury metrics (16%), whereas muscle responsiveness (3%) and pulse rise time (2%) had only slight effects. Frontal and upward loading directions were the worst for neck, spine, and lower extremity injury metrics, whereas rear and downward directions were the worst for head injury metrics. Higher magnitude pulses and pre-bracing also increased the injury risk.


Assuntos
Astronautas , Voo Espacial , Humanos , Masculino , Modelos Biológicos , Acidentes de Trânsito , Músculos , Fenômenos Biomecânicos , Análise de Elementos Finitos
16.
Accid Anal Prev ; 193: 107283, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716195

RESUMO

The objective of the current study was to perform a preliminary validation of the Global Human Body Models Consortium (GHBMC) average male occupant models, simplified (M50-OS) and detailed (M50-O) and the 70YO aged model in Far-side impacts and compare the head kinematics against the PMHS responses published by Petit et al. (2019). The buck used to simulate the far-side impacts comprised a seat, headrest, center console plate, leg support plate, and footrest plate with rigid material properties. The three occupant models were gravity settled onto the rigid seat and belted with a 3-point seatbelt. Positioning details of the PMHS were followed in the model setup process. A deceleration pulse with ΔV of 8 m/s was applied. The far-side crash simulations were performed with and without the addition of a plexiglass cover around the setup similar to the experimental setup. The head kinematics were extracted from the models for comparison against the PMHS data. Peak head displacements in Y and Z axes from the three models were compared to the PMHS data in addition to the head rotation along X axes. The peak head displacement values for the M50-OS, M50-O, and M50-O 70YO aged models are 594.10 mm, 568.44 mm, and 567.90 mm along Y and 325.21 mm, 402.66 mm, and 375.92 mm respectively along Z when the plexiglass cover is included in the test. The peak head rotation values for the M50-OS, M50-O, and M50-O 70YO aged models are 95.64°, 122.15°, and 129.08° respectively when the plexiglass cover is included in the test. The three occupant models capture the general trend of the PMHS data. The detailed occupant models have higher head rotation compared to the simplified model because of the deformable structure of the spine and intervertebral discs modeled. These three occupant models can be used for further parametric studies in this condition to study the influence of restraint parameters.

17.
Ann Biomed Eng ; 51(7): 1513-1522, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36841890

RESUMO

The use of ovine animal models in the study of injury biomechanics and modeling is increasing, due to their favorable size and other physiological characteristics. Along with this increase, there has also been increased interest in the development of in silico ovine models for computational studies to compliment physical experiments. However, there remains a gap in the literature characterizing the morphological and mechanical characteristics of ovine ribs. The objective of this study therefore is to report anatomical and mechanical properties of the ovine ribs using microtomography (micro-CT) and two types of mechanical testing (quasi-static bending and dynamic tension). Using microtomography, young ovine rib samples obtained from a local abattoir were cut into approximately fourteen 38 mm sections and scanned. From these scans, the cortical bone thickness and cross-sectional area were measured, and the moment of inertia was calculated to enhance the mechanical testing data. Based on a standard least squares statistical model, the cortical bone thickness varied depending on the region of the cross-section and the position along the length of the rib (p < 0.05), whereas the cross-sectional area remained consistent (p > 0.05). Quasi-static three-point bend testing was completed on ovine rib samples, and the resulting force-displacement data was analyzed to obtain the stiffness (44.67 ± 17.65 N/mm), maximum load (170.54 ± 48.28 N) and displacement at maximum load (7.19 ± 2.75 mm), yield load (167.81 ± 48.12 N) and displacement at yield (6.10 ± 2.25 mm), and the failure load (110.90 ± 39.30 N) and displacement at failure (18.43 ± 2.10 mm). The resulting properties were not significantly affected by the rib (p > 0.05), but by the animal they originated from (p < 0.05). For the dynamic testing, samples were cut into coupons and tested in tension with an average strain rate of 18.9 strain/sec. The resulting dynamic testing properties of elastic modulus (5.16 ± 2.03 GPa), failure stress (63.29 ± 14.02 MPa), and failure strain (0.0201 ± 0.0052) did not vary based on loading rate (p > 0.05).


Assuntos
Fenômenos Mecânicos , Costelas , Ovinos , Animais , Microtomografia por Raio-X , Costelas/diagnóstico por imagem , Costelas/lesões , Osso Cortical/anatomia & histologia , Fenômenos Biomecânicos , Estresse Mecânico
18.
PLoS One ; 18(12): e0287529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127918

RESUMO

The use of small ruminants, mainly sheep and goats, is increasing in biomedical research. Small ruminants are a desirable animal model due to their human-like anatomy and physiology. However, the large variability between studies and lack of baseline data on these animals creates a barrier to further research. This knowledge gap includes a lack of computed tomography (CT) scans for healthy subjects. Full body, contrast enhanced CT scans of caprine and ovine subjects were acquired for subsequent modeling studies. Scans were acquired from an ovine specimen (male, Khatadin, 30-35 kg) and caprine specimen (female, Nubian 30-35 kg). Scans were acquired with and without contrast. Contrast enhanced scans utilized 1.7 mL/kg of contrast administered at 2 mL/s and scans were acquired 20 seconds, 80 seconds, and 5 minutes post-contrast. Scans were taken at 100 kV and 400 mA. Each scan was reconstructed using a bone window and a soft tissue window. Sixteen full body image data sets are presented (2 specimens by 4 contrast levels by 2 reconstruction windows) and are available for download through the form located at: https://redcap.link/COScanData. Scans showed that the post-contrast timing and scan reconstruction method affected structural visualization. The data are intended for further biomedical research on ruminants related to computational model development, device prototyping, comparative diagnostics, intervention planning, and other forms of translational research.


Assuntos
Cabras , Ruminantes , Ovinos , Animais , Masculino , Humanos , Feminino , Tomografia Computadorizada por Raios X/métodos
19.
Ann Biomed Eng ; 51(7): 1408-1419, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36652027

RESUMO

While astronauts may pilot future lunar landers in a standing posture, the response of the human body under lunar launch and landing-related dynamic loading conditions is not well understood. It is important to consider the effects of active muscles under these loading conditions as muscles stabilize posture while standing. In the present study, astronaut response for a piloted lunar mission in a standing posture was simulated using an active human body model (HBM) with a closed-loop joint-angle based proportional integral derivative controller muscle activation strategy and compared with a passive HBM to understand the effects of active muscles on astronaut body kinematics and injury risk. While head, neck, and lumbar spine injury risk were relatively unaffected by active muscles, the lower extremity injury risk and the head and arm kinematics were significantly changed. Active muscle prevented knee-buckling and spinal slouching and lowered tibia injury risk in the active vs. passive model (revised tibia index: 0.02-0.40 vs. 0.01-0.58; acceptable tolerance: 0.43). Head displacement was higher in the active vs. passive model (11.6 vs. 9.0 cm forward, 6.3 vs. 7.0 cm backward, 7.9 vs. 7.3 cm downward, 3.7 vs. 2.4 cm lateral). Lower arm movement was seen with the active vs. passive model (23 vs. 35 cm backward, 12 vs. 20 cm downward). Overall simulations suggest that the passive model may overpredict injury risk in astronauts for spaceflight loading conditions, which can be improved using the model with active musculature.


Assuntos
Astronautas , Pescoço , Humanos , Fenômenos Biomecânicos , Pescoço/fisiologia , Coluna Vertebral/fisiologia , Músculo Esquelético/fisiologia
20.
Ann Biomed Eng ; 51(5): 951-965, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36352272

RESUMO

Astronauts may pilot a future lunar lander in a standing or upright/reclined seated posture. This study compared kinematics and injury risk for the upright/reclined (30°; 60°) seated vs. standing postures for lunar launch/landing using human body modeling across 30 simulations. While head metrics for standing and upright seated postures were comparable to 30 cm height jumps, those of reclined postures were closer to 60 cm height jumps. Head linear acceleration for 60° reclined posture in the 5 g/10 ms pulse exceeded NASA's tolerance (10.1 g; tolerance: 10 g). Lower extremity metrics exceeding NASA's tolerance in the standing posture (revised tibia index: 0.36-0.53; tolerance: 0.43) were lowered in seated postures (0.00-0.04). Head displacement was higher in standing vs. seated (9.0 cm vs. 2.4 cm forward, 7.0 cm vs. 1.3 cm backward, 2.1 cm vs. 1.2 cm upward, 7.3 cm vs. 0.8 cm downward, 2.4 cm vs. 3.2 cm lateral). Higher arm movement was seen with seated vs. standing (40 cm vs. 25 cm forward, 60 cm vs. 15 cm upward, 30 cm vs. 20 cm downward). Pulse-nature contributed more than 40% to the injury metrics for seated postures compared to 80% in the standing posture. Seat recline angle contributed about 22% to the injury metrics in the seated posture. This study established a computational methodology to simulate the different postures of an astronaut for lunar landings and generated baseline injury risk and body kinematics data.


Assuntos
Astronautas , Postura , Humanos , Fenômenos Biomecânicos , Posição Ortostática , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA