Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(5): e26658, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520368

RESUMO

Cognitive reserve (CR) explains differential susceptibility of cognitive performance to neuropathology. However, as brain pathologies progress, cognitive decline occurs even in individuals with initially high CR. The interplay between the structural brain health (= level of brain reserve) and CR-related brain networks therefore requires further research. Our sample included 142 individuals aged 60-70 years. National Adult Reading Test intelligence quotient (NART-IQ) was our CR proxy. On an in-scanner Letter Sternberg task, we used ordinal trend (OrT) analysis to extract a task-related brain activation pattern (OrT slope) for each participant that captures increased expression with task load (one, three, and six letters). We assessed whether OrT slope represents a neural mechanism underlying CR by associating it with task performance and NART-IQ. Additionally, we investigated how the following brain reserve measures affect the association between NART-IQ and OrT slope: mean cortical thickness, total gray matter volume, and brain volumes proximal to the areas contained in the OrT patterns. We found that higher OrT slope was associated with better task performance and higher NART-IQ. Further, the brain reserve measures were not directly associated with OrT slope, but they affected the relationship between NART-IQ and OrT slope: NART-IQ was associated with OrT slope only in individuals with high brain reserve. The degree of brain reserve has an impact on how (and perhaps whether) CR can be implemented in brain networks in older individuals.


Assuntos
Reserva Cognitiva , Adulto , Humanos , Idoso , Reserva Cognitiva/fisiologia , Testes de Inteligência , Encéfalo/diagnóstico por imagem , Escalas de Wechsler , Mapeamento Encefálico
2.
Hum Brain Mapp ; 43(5): 1630-1639, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984770

RESUMO

Financial decision-making (FDM) and awareness of the integrity of one's FDM abilities (or financial awareness) are both critical for preventing financial mistakes. We examined the white matter correlates of these constructs and hypothesized that the tracts connecting the temporal-frontal regions would be most strongly correlated with both FDM and financial awareness. Overall, 49 healthy older adults were included in the FDM analysis and 44 in the financial awareness analyses. The Objective Financial Competency Assessment Inventory was used to measure FDM. Financial awareness was measured by integrating metacognitive ratings into this inventory and was calculated as the degree of overconfidence or underconfidence. Diffusion tensor imaging data were processed with Tracts Constrained by Underlying Anatomy distributed as part of the FreeSurfer analytic suite, which produced average measures of fractional anisotropy and mean diffusivity in 18 white matter tracts along with the overall tract average. As expected, FDM showed the strongest negative associations with average mean diffusivity measure of the superior longitudinal fasciculus -temporal (SLFT; r = -.360, p = .011) and -parietal (r = -.351, p = .014) tracts. After adjusting for FDM, only the association between financial awareness and average mean diffusivity measure of the right SLFT (r = .310, p = .046) was significant. Overlapping white matter tracts were involved in both FDM and financial awareness. More importantly, these preliminary findings reinforce emerging literature on a unique role of right hemisphere temporal connections in supporting financial awareness.


Assuntos
Substância Branca , Idoso , Anisotropia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Humanos , Percepção , Substância Branca/diagnóstico por imagem
3.
Neuroimage ; 215: 116809, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32276060

RESUMO

This study examined within-subject differences among three fluid abilities that decline with age: reasoning, episodic memory and processing speed, compared with vocabulary, a crystallized ability that is maintained with age. The data were obtained from the Reference Ability Neural Network (RANN) study from which 221 participants had complete behavioral data for all 12 cognitive tasks, three per ability, along with fMRI and diffusion weighted imaging data. We used fMRI task activation to guide white matter tractography, and generated mean percent signal change in the regions associated with the processing of each ability along with diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), for each cognitive ability. Qualitatively brain regions associated with vocabulary were more localized and lateralized to the left hemisphere whereas the fluid abilities were associated with brain activations that were more distributed across the brain and bilaterally situated. Using continuous age, we observed smaller correlations between MD and age for white matter tracts connecting brain regions associated with the vocabulary ability than that for the fluid abilities, suggesting that vocabulary white matter tracts were better maintained with age. Furthermore, after multiple comparisons correction and accounting for age, education, and sex, the mean percent signal change for episodic memory showed positive associations with behavioral performance. Overall, the vocabulary ability may be better maintained with age due to the more localized brain regions involved, which places smaller reliance on long distance white matter tracts for signal transduction. These results support the hypothesis that functional activation and white matter structures underlying the vocabulary ability contribute to the ability's greater resistance against aging.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Tempo de Reação/fisiologia , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Encéfalo/fisiologia , Cristalização , Imagem de Tensor de Difusão/métodos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Estimulação Luminosa/métodos , Substância Branca/fisiologia
4.
J Neuropsychiatry Clin Neurosci ; 32(4): 362-369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32397876

RESUMO

OBJECTIVE: The authors examined the effects of two common functional polymorphisms-brain-derived neurotrophic factor (BDNF) Val66Met and catechol-O-methyltransferase (COMT) Val158Met-on cognitive, neuropsychiatric, and motor symptoms and MRI findings in persons with frontotemporal lobar degeneration (FTLD) syndromes. METHODS: The BDNF Val66Met and COMT Val158Met polymorphisms were genotyped in 174 participants with FTLD syndromes, including behavioral variant frontotemporal dementia, primary progressive aphasia, and corticobasal syndrome. Gray matter volumes and scores on the Delis-Kaplan Executive Function System, Mattis Dementia Rating Scale, Wechsler Memory Scale, and Neuropsychiatric Inventory were compared between allele groups. RESULTS: The BDNF Met allele at position 66 was associated with a decrease in depressive symptoms (F=9.50, df=1, 136, p=0.002). The COMT Val allele at position 158 was associated with impairment of executive function (F=6.14, df=1, 76, p=0.015) and decreased bilateral volume of the head of the caudate in patients with FTLD (uncorrected voxel-level threshold of p<0.001). Neither polymorphism had a significant effect on motor function. CONCLUSIONS: These findings suggest that common functional polymorphisms likely contribute to the phenotypic variability seen in patients with FTLD syndromes. This is the first study to implicate BDNF polymorphisms in depressive symptoms in FTLD. These results also support an association between COMT polymorphisms and degeneration patterns and cognition in FTLD.


Assuntos
Doenças dos Gânglios da Base , Fator Neurotrófico Derivado do Encéfalo/genética , Catecol O-Metiltransferase/genética , Depressão , Função Executiva/fisiologia , Degeneração Lobar Frontotemporal , Substância Cinzenta/patologia , Idoso , Doenças dos Gânglios da Base/complicações , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/patologia , Doenças dos Gânglios da Base/fisiopatologia , Depressão/etiologia , Depressão/fisiopatologia , Feminino , Degeneração Lobar Frontotemporal/complicações , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único
5.
Hum Brain Mapp ; 40(13): 3832-3842, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31111980

RESUMO

Understanding the associations between brain biomarkers (BMs) and cognition across age is of paramount importance. Five hundred and sixty-two participants (19-80 years old, 16 mean years of education) were studied. Data from structural T1, diffusion tensor imaging, fluid-attenuated inversion recovery, and resting-state functional magnetic resonance imaging scans combined with a neuropsychological evaluation were used. More specifically, the measures of cortical, entorhinal, and parahippocampal thickness, hippocampal and striatal volume, default-mode network and fronto-parietal control network, fractional anisotropy (FA), and white matter hyperintensity (WMH) were assessed. z-Scores for three cognitive domains measuring episodic memory, executive function, and speed of processing were computed. Multiple linear regressions and interaction effects between each of the BMs and age on cognition were examined. Adjustments were made for age, sex, education, intracranial volume, and then, further, for general cognition and motion. BMs were significantly associated with cognition. Across the adult lifespan, slow speed was associated with low striatal volume, low FA, and high WMH burden. Poor executive function was associated with low FA, while poor memory was associated with high WMH burden. After adjustments, results were significant for the associations: speed-FA and WMH, memory-entorhinal thickness. There was also a significant interaction between hippocampal volume and age in memory. In age-stratified analyses, the most significant associations for the young group occurred between FA and executive function, WMH, and memory, while for the old group, between entorhinal thickness and speed, and WMH and speed, executive function. Unique sets of BMs can explain variation in specific cognitive domains across adulthood. Such results provide essential information about the neurobiology of aging.


Assuntos
Envelhecimento/fisiologia , Cérebro , Cognição/fisiologia , Conectoma , Substância Cinzenta , Desempenho Psicomotor/fisiologia , Substância Branca , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Cérebro/anatomia & histologia , Cérebro/diagnóstico por imagem , Cérebro/fisiologia , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
6.
Neuroimage ; 172: 51-63, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355766

RESUMO

To better understand the impact of aging, along with other demographic and brain health variables, on the neural networks that support different aspects of cognitive performance, we applied a brute-force search technique based on Principal Components Analysis to derive 4 corresponding spatial covariance patterns (termed Reference Ability Neural Networks -RANNs) from a large sample of participants across the age range. 255 clinically healthy, community-dwelling adults, aged 20-77, underwent fMRI while performing 12 tasks, 3 tasks for each of the following cognitive reference abilities: Episodic Memory, Reasoning, Perceptual Speed, and Vocabulary. The derived RANNs (1) showed selective activation to their specific cognitive domain and (2) correlated with behavioral performance. Quasi out-of-sample replication with Monte-Carlo 5-fold cross validation was built into our approach, and all patterns indicated their corresponding reference ability and predicted performance in held-out data to a degree significantly greater than chance level. RANN-pattern expression for Episodic Memory, Reasoning and Vocabulary were associated selectively with age, while the pattern for Perceptual Speed showed no such age-related influences. For each participant we also looked at residual activity unaccounted for by the RANN-pattern derived for the cognitive reference ability. Higher residual activity was associated with poorer brain-structural health and older age, but -apart from Vocabulary-not with cognitive performance, indicating that older participants with worse brain-structural health might recruit alternative neural resources to maintain performance levels.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Rede Nervosa/fisiopatologia , Adulto , Idoso , Mapeamento Encefálico/métodos , Feminino , Humanos , Longevidade/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Neuroimage ; 178: 36-45, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29772378

RESUMO

The concept of cognitive reserve (CR) can explain individual differences in susceptibility to cognitive or functional impairment in the presence of age or disease-related brain changes. Epidemiologic evidence indicates that CR helps maintain performance in the face of pathology across multiple cognitive domains. We therefore tried to identify a single, "task-invariant" CR network that is active during the performance of many disparate tasks. In imaging data acquired from 255 individuals age 20-80 while performing 12 different cognitive tasks, we used an iterative approach to derive a multivariate network that was expressed during the performance of all tasks, and whose degree of expression correlated with IQ, a proxy for CR. When applied to held out data or forward applied to fMRI data from an entirely different activation task, network expression correlated with IQ. Expression of the CR pattern accounted for additional variance in fluid reasoning performance over and above the influence of cortical thickness, and also moderated between cortical thickness and reasoning performance, consistent with the behavior of a CR network. The identification of a task-invariant CR network supports the idea that life experiences may result in brain processing differences that might provide reserve against age- or disease-related changes across multiple tasks.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Envelhecimento Cognitivo/fisiologia , Reserva Cognitiva/fisiologia , Função Executiva/fisiologia , Inteligência/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Vocabulário , Adulto Jovem
8.
Ann Neurol ; 79(6): 1014-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27129740

RESUMO

OBJECTIVE: We examined the association of nutrient intake with microstructural white matter integrity, and the role of white matter integrity in the association between nutrient consumption and cognition. METHODS: This cross-sectional analysis included 239 elderly (age ≥ 65 years) participants of a multiethnic cohort. White matter integrity was measured with fractional anisotropy (FA) from diffusion tensor magnetic resonance imaging. Nutrient patterns were derived from principal component analysis based on energy-adjusted intake of 24 selected nutrients. Generalized linear models were used to assess the association between nutrient patterns and mean FA of 26 white matter tracts. Mediation analysis was used to determine whether FA mediates the nutrient-cognition relationship. All models were adjusted for age at time of scan, gender, ethnicity, education, caloric intake, and apolipoprotein genotype. RESULTS: Among the identified 6 nutrient patterns, 1 (nutrient pattern 6, characterized by high intakes of Ω-3 and Ω-6 polyunsaturated fatty acids and vitamin E) was positively associated with FA. Those with the highest tertile of nutrient pattern 6 score had a mean of 0.01 (p = 0.01) higher FA value than those with the lowest tertile, similar to the effect of a 10-year decrease in age (b for age = -0.001, p = 0.01). FA mediated the relationship between nutrient pattern 6 and memory, language, visuospatial and speed/executive function, and mean cognitive scores. INTERPRETATION: Our study suggests that older adults consuming more polyunsaturated fatty acids and vitamin E rich foods had better white matter integrity, and that maintaining white matter microstructural integrity might be a mechanism for the beneficial role of diet on cognition. Ann Neurol 2016;79:1014-1025.


Assuntos
Cognição , Alimentos , Substância Branca , Idoso de 80 Anos ou mais , Anisotropia , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Neuroimagem , Testes Neuropsicológicos
9.
Neuroimage ; 125: 53-60, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26477658

RESUMO

UNLABELLED: Previous studies investigating the relationship of white matter (WM) integrity to cognitive abilities and aging have either focused on a global measure or a few selected WM tracts. Ideally, contribution from all of the WM tracts should be evaluated at the same time. However, the high collinearity among WM tracts precludes systematic examination of WM tracts simultaneously without sacrificing statistical power due to stringent multiple-comparison corrections. Multivariate covariance techniques enable comprehensive simultaneous examination of all WM tracts without being penalized for high collinearity among observations. METHOD: In this study, Scaled Subprofile Modeling (SSM) was applied to the mean integrity of 18 major WM tracts to extract covariance patterns that optimally predicted four cognitive abilities (perceptual speed, episodic memory, fluid reasoning, and vocabulary) in 346 participants across ages 20 to 79years old. Using expression of the covariance patterns, age-independent effects of white matter integrity on cognition and the indirect effect of WM integrity on age-related differences in cognition were tested separately, but inferences from the indirect analyses were cautiously made given that cross-sectional data set was used in the analysis. RESULTS: A separate covariance pattern was identified that significantly predicted each cognitive ability after controlling for age except for vocabulary, but the age by WM covariance pattern interaction was not significant for any of the three abilities. Furthermore, each of the patterns mediated the effect of age on the respective cognitive ability. A distinct set of WM tracts was most influential in each of the three patterns. The WM covariance pattern accounting for fluid reasoning showed the most number of influential WM tracts whereas the episodic memory pattern showed the least number. CONCLUSION: Specific patterns of WM tracts make significant contributions to the age-related differences in perceptual speed, episodic memory, and fluid reasoning but not vocabulary. Other measures of brain health will need to be explored to reveal the major influences on the vocabulary ability.


Assuntos
Envelhecimento/patologia , Cognição/fisiologia , Vias Neurais/patologia , Substância Branca/patologia , Adulto , Idoso , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Adulto Jovem
10.
J Cogn Neurosci ; 27(6): 1249-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25539045

RESUMO

Cognitive psychologists posit several specific cognitive abilities that are measured with sets of cognitive tasks. Tasks that purportedly tap a specific underlying cognitive ability are strongly correlated with one another, whereas performances on tasks that tap different cognitive abilities are less strongly correlated. For these reasons, latent variables are often considered optimal for describing individual differences in cognitive abilities. Although latent variables cannot be directly observed, all cognitive tasks representing a specific latent ability should have a common neural underpinning. Here, we show that cognitive tasks representing one ability (i.e., either perceptual speed or fluid reasoning) had a neural activation pattern distinct from that of tasks in the other ability. One hundred six participants between the ages of 20 and 77 years were imaged in an fMRI scanner while performing six cognitive tasks, three representing each cognitive ability. Consistent with prior research, behavioral performance on these six tasks clustered into the two abilities based on their patterns of individual differences and tasks postulated to represent one ability showed higher similarity across individuals than tasks postulated to represent a different ability. This finding was extended in the current report to the spatial resemblance of the task-related activation patterns: The topographic similarity of the mean activation maps for tasks postulated to reflect the same reference ability was higher than for tasks postulated to reflect a different reference ability. Furthermore, for any task pairing, behavioral and topographic similarities of underlying activation patterns are strongly linked. These findings suggest that differences in the strengths of correlations between various cognitive tasks may be because of the degree of overlap in the neural structures that are active when the tasks are being performed. Thus, the latent variable postulated to account for correlations at a behavioral level may reflect topographic similarities in the neural activation across different brain regions.


Assuntos
Encéfalo/fisiologia , Percepção/fisiologia , Pensamento/fisiologia , Adulto , Idoso , Envelhecimento/fisiologia , Envelhecimento/psicologia , Mapeamento Encefálico , Cognição/fisiologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
11.
Neuroimage ; 103: 139-151, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245813

RESUMO

We introduce and describe the Reference Ability Neural Network Study and provide initial feasibility data. Based on analyses of large test batteries administered to individuals ranging from young to old, four latent variables, or reference abilities (RAs) that capture the majority of the variance in age-related cognitive change have been identified: episodic memory, fluid reasoning, perceptual speed, and vocabulary. We aim to determine whether spatial fMRI networks can be derived that are uniquely associated with the performance of each reference ability. We plan to image 375 healthy adults (50 per decade from age 20 to 50; 75 per decade from age 50 to 80) while performing a set of 12 cognitive tasks. Data on 174 participants are reported here. Three tasks were grouped a priori into each of the four reference ability domains. We first assessed to what extent both cognitive task scores and activation patterns readily show convergent and discriminant validity, i.e. increased similarity between tasks within the same domain and decreased similarity between tasks between domains, respectively. Block-based time-series analysis of each individual task was conducted for each participant via general linear modeling. We partialled activation common to all tasks out of the imaging data. For both test scores and activation topographies, we then calculated correlations for each of 66 possible pairings of tasks, and compared the magnitude of correlation of tasks within reference ability domains to that of tasks between domains. For the behavioral data, globally there were significantly stronger inter-task correlations within than between domains. When examining individual abilities, 3 of the domains also met these criteria but memory reached only borderline significance. Overall there was greater topographic similarity within reference abilities than between them (p<0.0001), but when examined individually, statistical significance was reached only for episodic memory and perceptual speed. We then turned to a multivariate technique, linear indicator regression analysis, to derive four unique linear combinations of Principal Components (PC) of imaging data that were associated with each RA. We investigated the ability of the identified PCs to predict the reference domain associated with the activation of individual subjects for individual tasks. Median accuracy rates for associating component task activation with a particular reference ability were quite good: memory: 82%; reasoning: 87%; speed: 84%; vocabulary: 77%. These results demonstrate that even using basic GLM analysis, the topography of activation of tasks within a domain is more similar than tasks between domains. The follow-up regression analyses suggest that all tasks with each RA rely on a common network, unique to that RA. Our ultimate goal is to better characterize these RA neural networks and then study how their expression changes across the age span. Our hope is that by focusing on these networks associated with key features of cognitive aging, as opposed to task-related activation associated with individual tasks, we will be able to advance our knowledge regarding the key brain changes that underlie cognitive aging.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Projetos de Pesquisa , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Cognição/fisiologia , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Hum Brain Mapp ; 35(8): 4090-104, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24522972

RESUMO

Cognition is important for locomotion and gait decline increases the risk for morbidity, mortality, cognitive decline, and dementia. Yet, the neural correlates of gait are not well established, because most neuroimaging methods cannot image the brain during locomotion. Imagined gait protocols overcome this limitation. This study examined the behavioral and neural correlates of a new imagined gait protocol that involved imagined walking (iW), imagined talking (iT), and imagined walking-while-talking (iWWT). In Experiment 1, 82 cognitively-healthy older adults (M=80.45) walked (W), iW, walked while talking (WWT) and iWWT. Real and imagined walking task times were strongly correlated, particularly real and imagined dual-task times (WWT and iWWT). In Experiment 2, 33 cognitively-healthy older adults (M=73.03) iW, iT, and iWWT during functional magnetic resonance imaging. A multivariate Ordinal Trend (OrT) Covariance analysis identified a pattern of brain regions that: (1) varied as a function of imagery task difficulty (iW, iT and iWWT), (2) involved cerebellar, precuneus, supplementary motor and other prefrontal regions, and (3) were associated with kinesthetic imagery ratings and behavioral performance during actual WWT. This is the first study to compare the behavioral and neural correlates of imagined gait in single and dual-task situations, an issue that is particularly relevant to elderly populations. These initial findings encourage further research and development of this imagined gait protocol as a tool for improving gait and cognition among the elderly.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Imaginação/fisiologia , Fala/fisiologia , Caminhada/fisiologia , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Feminino , Humanos , Cinestesia/fisiologia , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Percepção Visual/fisiologia
13.
Neurobiol Aging ; 138: 36-44, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522385

RESUMO

Greater engagement in cognitively stimulating activities (CSA) during adulthood has been shown to protect against neurocognitive decline, but no studies have investigated whether CSA during childhood protects against effects of brain changes on cognition later in life. The current study tested the moderating role of childhood CSA in the relationships between brain structure and cognitive performance during adulthood. At baseline (N=250) and 5-year follow-up (N=204) healthy adults aged 20-80 underwent MRI to assess four structural brain measures and completed neuropsychological tests to measure three cognitive domains. Participants were categorized into low and high childhood CSA based on self-report questionnaires. Results of multivariable linear regressions analyzing interactions between CSA, brain structure, and cognition showed that higher childhood CSA was associated with a weaker relationship between cortical thickness and memory at baseline, and attenuated the effects of change in cortical thickness and brain volume on decline in processing speed over time. These findings suggest higher CSA during childhood may mitigate the effects of brain structure changes on cognitive function later in life.


Assuntos
Cognição , Disfunção Cognitiva , Humanos , Encéfalo/diagnóstico por imagem
14.
Neurobiol Aging ; 133: 28-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38376885

RESUMO

The relationship between tau deposition and cognitive decline in cognitively healthy older adults is still unclear. The tau PET tracer 18F-MK-6240 has shown favorable imaging characteristics to identify early tau deposition in aging. We evaluated the relationship between in vivo tau levels (18F-MK-6240) and retrospective cognitive change over 5 years in episodic memory, processing speed, and reasoning. For tau quantification, a set of regions of interest (ROIs) was selected a priori based on previous literature: (1) total-ROI comprising selected areas, (2) medial temporal lobe-ROI, and (3) lateral temporal lobe-ROI and cingulate/parietal lobe-ROI. Higher tau burden in most ROIs was associated with a steeper decline in memory and speed. There were no associations between tau and reasoning change. The novelty of this finding is that tau burden may affect not only episodic memory, a well-established finding but also processing speed. Our finding reinforces the notion that early tau deposition in areas related to Alzheimer's disease is associated with cognitive decline in cognitively unimpaired individuals, even in a sample with low amyloid-ß pathology.


Assuntos
Doença de Alzheimer , Velocidade de Processamento , Humanos , Idoso , Estudos Retrospectivos , Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides
15.
Front Aging Neurosci ; 15: 1152582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151844

RESUMO

Introduction: Aging negatively impacts the ability to rapidly and successfully switch between two or more tasks that have different rules or objectives. However, previous work has shown that the context impacts the extent of this age-related impairment: while there is relative age-related invariance when participants must rapidly switch back and forth between two simple tasks (often called "switch costs"), age-related differences emerge when the contexts changes from one in which only one task must be performed to one in which multiple tasks must be performed, but a trial-level switch is not required (e.g., task repeat trials within dual task blocks, often called "mixing costs"). Here, we explored these two kinds of costs behaviorally, and also investigated the neural correlates of these effects. Methods: Seventy-one younger adults and 175 older adults completed a task-switching experiment while they underwent fMRI brain imaging. We investigated the impact of age on behavioral performance and neural activity considering two types of potential costs: switch costs (dual-task switch trials minus dual-task non-switch trials), and mixing costs (dual-task non-switch minus single-task trials). Results: We replicated previous behavioral findings, with greater age associated with mixing, but not switch costs. Neurally, we found age-related compensatory activations for switch costs in the dorsal lateral prefrontal cortex, pars opercularis, superior temporal gyrus, and the posterior and anterior cingulate, but age-related under recruitment for mixing costs in fronto-parietal areas including the supramarginal gyrus and pre and supplemental motor areas. Discussion: These results suggest an age-based dissociation between executive components that contribute to task switching.

16.
J Gerontol B Psychol Sci Soc Sci ; 78(8): 1284-1293, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-36882044

RESUMO

OBJECTIVES: Age-related cognitive changes can be influenced by both brain maintenance (BM), which refers to the relative absence over time of changes in neural resources or neuropathologic changes, and cognitive reserve (CR), which encompasses brain processes that allow for better-than-expected behavioral performance given the degree of life-course-related brain changes. This study evaluated the effects of age, BM, and CR on longitudinal changes over 2 visits, 5 years apart, in 3 cognitive abilities that capture most of age-related variability. METHODS: Participants included 254 healthy adults aged 20-80 years at recruitment. Potential BM was estimated using whole-brain cortical thickness and white matter mean diffusivity at both visits. Education and intelligence quotient (IQ; estimated with American National Adult Reading Test) were tested as moderating factors for cognitive changes in the 3 cognitive abilities. RESULTS: Consistent with BM-after accounting for age, sex, and baseline performance-individual differences in the preservation of mean diffusivity and cortical thickness were independently associated with relative preservation in the 3 abilities. Consistent with CR-after accounting for age, sex, baseline performance, and structural brain changes-higher IQ, but not education, was associated with reduced 5-year decline in reasoning (ß = 0.387, p = .002), and education was associated with reduced decline in speed (ß = 0.237, p = .039). DISCUSSION: These results demonstrate that both CR and BM can moderate cognitive changes in healthy aging and that the 2 mechanisms can make differential contributions to preserved cognition.


Assuntos
Reserva Cognitiva , Envelhecimento Saudável , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética
17.
Genes (Basel) ; 14(9)2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37761954

RESUMO

Genome-wide association studies have discovered common genetic variants associated with cognitive performance. Polygenic scores that summarize these discoveries explain up to 10% of the variance in cognitive test performance in samples of adults. However, the role these genetics play in cognitive aging is not well understood. We analyzed data from 168 cognitively healthy participants aged 23-77 years old, with data on genetics, neuropsychological assessment, and brain-imaging measurements from two large ongoing studies, the Reference Abilities Neural Networks, and the Cognitive Reserve study. We tested whether a polygenic index previously related to cognition (Cog PGI) would moderate the relationship between age and measurements of the cognitive domains extracted from a neuropsychological evaluation: fluid reasoning, memory, vocabulary, and speed of processing. We further explored the relationship of Cog PGI and age on cognition using Johnson-Neyman intervals for two-way interactions. Sex, education, and brain measures of cortical thickness, total gray matter volume, and white matter hyperintensity were considered covariates. The analysis controlled for population structure-ancestry. There was a significant interaction effect of Cog PGI on the association between age and the domains of memory (Standardized coefficient = -0.158, p-value = 0.022), fluid reasoning (Standardized coefficient = -0.146, p-value = 0.020), and vocabulary (Standardized coefficient = -0.191, p-value = 0.001). Higher PGI strengthened the negative relationship between age and the domains of memory and fluid reasoning while PGI weakened the positive relationship between age and vocabulary. Based on the Johnson-Neyman intervals, Cog PGI was significantly associated with domains of memory, reasoning, and vocabulary for younger adults. There is a significant moderation effect of genetic predisposition for cognition for the association between age and cognitive performance. Genetics discovered in genome-wide association studies of cognitive performance show a stronger association in young and midlife older adults.


Assuntos
Envelhecimento , Estudo de Associação Genômica Ampla , Humanos , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Envelhecimento/genética , Envelhecimento/psicologia , Encéfalo/diagnóstico por imagem , Cognição , Herança Multifatorial/genética
18.
Alzheimers Res Ther ; 15(1): 42, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855162

RESUMO

BACKGROUND: Amyloid deposition is a primary predictor of Alzheimer's disease (AD) and related neurodegenerative disorders. Retinal changes involving the structure and function of the ganglion cell layer are increasingly documented in both established and prodromal AD. Visual event-related potentials (vERP) are sensitive to dysfunction in the magno- and parvocellular visual systems, which originate within the retinal ganglion cell layer. The present study evaluates vERP as a function of amyloid deposition in aging, and in mild cognitive impairment (MCI). METHODS: vERP to stimulus-onset, motion-onset, and alpha-frequency steady-state (ssVEP) stimuli were obtained from 16 amyloid-positive and 41 amyloid-negative healthy elders and 15 MCI individuals and analyzed using time-frequency approaches. Social cognition was assessed in a subset of individuals using The Awareness of Social Inference Test (TASIT). RESULTS: Neurocognitively intact but amyloid-positive participants and MCI individuals showed significant deficits in stimulus-onset (theta) and motion-onset (delta) vERP generation relative to amyloid-negative participants (all p < .01). Across healthy elders, a composite index of these measures correlated highly (r = - .52, p < .001) with amyloid standardized uptake value ratios (SUVR) and TASIT performance. A composite index composed of vERP measures significant differentiated amyloid-positive and amyloid-negative groups with an overall classification accuracy of > 70%. DISCUSSION: vERP may assist in the early detection of amyloid deposition among older individuals without observable neurocognitive impairments and in linking previously documented retinal deficits in both prodromal AD and MCI to behavioral impairments in social cognition.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Proteínas Amiloidogênicas , Percepção Visual , Retina , Envelhecimento
19.
Brain Cogn ; 78(3): 248-56, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22305924

RESUMO

Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a target and non-matches were non-targets. Tracking error means were binned time-locked to stimulus onset of the detection task in order to observe changes associated with dual-responding by comparing the error during targets and non-targets. Similar comparison was made with fMRI data. Our result showed that despite a significant increase in the overall tracking error post SD, from 20 pixels pre SD to 45 pixels post SD, error decreased to a minimum of about 25 pixels 0-6s after dual-response. Despite an overall reduced activation post SD, greater activation difference between targets and non-targets was found post SD in task-related regions, such as the left cerebellum, the left somatosensory cortex, the left extrastriate cortex, bilateral precuneus, the left middle frontal gyrus, and the left motor cortex. Our results suggest that dual-response helps to alleviate performance impairment usually associated with SD. The duration of the alleviation effect was on the order of seconds after dual-responding.


Assuntos
Encéfalo/fisiopatologia , Desempenho Psicomotor/fisiologia , Privação do Sono/fisiopatologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Estimulação Magnética Transcraniana
20.
Front Psychol ; 13: 852995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756196

RESUMO

Cognitive Reserve (CR), according to a recent consensus definition of the NIH-funded Reserve and Resilience collaboratory, is constituted by any mechanism contributing to cognitive performance beyond, or interacting with, brain structure in the widest sense. To identity multivariate activation patterns fulfilling this postulate, we investigated a verbal Sternberg fMRI task and imaged 181 people with age coverage in the ranges 20-30 (44 participants) and 55-70 (137 participants). Beyond task performance, participants were characterized in terms of demographics, and neuropsychological assessments of vocabulary, episodic memory, perceptual speed, and abstract fluid reasoning. Participants studied an array of either one, three, or six upper-case letters for 3 s (=encoding phase), then a blank fixation screen was presented for 7 s (=maintenance phase), to be probed with a lower-case letter to which they responded with a differential button press whether the letter was part of the studied array or not (=retrieval phase). We focused on identifying maintenance-related activation patterns showing memory load increases in pattern score on an individual participant level for both age groups. We found such a pattern that increased with memory load for all but one person in the young participants (p < 0.001), and such a pattern for all participants in the older group (p < 0.001). Both patterns showed broad topographic similarities; however, relationships to task performance and neuropsychological characteristics were markedly different and point to individual differences in Cognitive Reserve. Beyond the derivation of group-level activation patterns, we also investigated the inter-subject spatial similarity of individual working memory rehearsal patterns in the older participants' group as a function of neuropsychological and task performance, education, and mean cortical thickness. Higher task accuracy and neuropsychological function was reliably associated with higher inter-subject similarity of individual-level activation patterns in older participants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA