Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Eng Online ; 20(1): 125, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906140

RESUMO

BACKGROUND: Wogonin (5, 7-dihydroxy-8-methoxyflavone) is a natural di-hydroxyl flavonoid extracted from the root of Scutellaria baicalensis Georgi. This paper was intended to investigate the mechanism of action of wogonin in alleviating the inflammation and apoptosis in acute lung injury (ALI). MATERIALS AND METHODS: Lipopolysaccharide (LPS) was used to establish the in vitro model of ALI. After wogonin treatment, the cell viability and apoptosis of LPS-induced A549 cells were, respectively, measured by CCK-8, TUNEL assays and acridine orange/ethidium bromide dual staining, while the contents of inflammatory cytokines and oxidative stress markers were estimated by RT-qPCR, ELISA assay, western blot analysis and commercial kits. Western blot was also conducted to assess the expression of proteins involved. Subsequently, the effect of wogonin on the sirtuin 1 (SIRT1)-mediated high-mobility group box 1 protein (HMGB1) deacetylation was investigated. SIRT1 inhibitor EX527 was used to evaluate the regulatory effects of wogonin on SIRT1-mediated HMGB1 deacetylation in A549 cells under LPS stimulation. RESULTS: LPS induced inflammation, oxidative stress and apoptosis of A549 cells, which was abolished by wogonin. It was also found that wogonin promoted the HMGB1 deacetylation, accompanied by upregulated SIRT1 expression. However, SIRT1 inhibitor EX527 partially reversed the protective effects of wogonin on the inflammation and apoptosis of LPS-induced A549 cells. CONCLUSION: Wogonin alleviated the inflammation and apoptosis in LPS-induced A549 cells by SIRT1-mediated HMGB1 deacetylation, which might represent the identification of a novel mechanism by which wogonin exerts protective effects on ALI and provide ideas for the application of wogonin to ALI treatment.


Assuntos
Inflamação , Lipopolissacarídeos , Apoptose , Células Epiteliais , Flavanonas , Humanos , Lipopolissacarídeos/toxicidade , Pulmão
2.
Tissue Cell ; 88: 102400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759522

RESUMO

Sepsis-induced acute lung injury is a common and severe complication of sepsis, for which effective treatments are currently lacking. Previous studies have demonstrated the influence of wogonin in treating acute lung injury (ALI). However, its precise mechanism of action remains unclear. To delve deeper into the mechanisms underlying wogonin's impacts in sepsis-induced acute lung injury, we established a mouse sepsis model through cecal ligation and puncture and conducted further cell experiments using lipopolysaccharide-treated MH-S and MLE-12 cells to explore wogonin's potential mechanisms of action in treating ALI. Our results revealed that wogonin significantly increased the survival rate of mice, alleviated pulmonary pathological damage and inflammatory cell infiltration, and activated the SIRT1-FOXO1 pathway. Additionally, wogonin suppressed the release of pro-inflammatory factors by M1 macrophages and induced the activation of M2 anti-inflammatory factors. Further in vitro studies confirmed that wogonin effectively inhibited M1 macrophage polarization through the activation of the SIRT1-FOXO1 pathway, thereby mitigating lung pathological changes caused by ALI. In summary, our study demonstrated that wogonin regulated macrophage M1/M2 polarization through the activation of the SIRT1-FOXO1 pathway, thereby attenuating the inflammatory response and improving pulmonary pathological changes induced by sepsis-induced ALI. This discovery provided a solid mechanistic foundation for the therapeutic use of wogonin in sepsis-induced ALI, shedding new light on potential strategies for the treatment of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Flavanonas , Proteína Forkhead Box O1 , Macrófagos , Sepse , Transdução de Sinais , Sirtuína 1 , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Sirtuína 1/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Flavanonas/farmacologia , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Proteína Forkhead Box O1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos
3.
Environ Sci Pollut Res Int ; 28(41): 58617-58628, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34117547

RESUMO

In order to study the emission characteristics of the products during the blending of antibiotic residues in coal-fired power plants, blending tests were performed on a 140 t/h circulating fluidized bed boiler. It was found that during combustion, 64 to 87.6% of Cr, As, and Pb are concentrated in the fly ash, and 11.4 to 35% are concentrated in the bottom ash. Only a small amount of these elements are captured by the desulfurization system or enter the environment. During the material distribution of the desulfurization system, trace elements are mostly concentrated in gypsum. In the desulfurization system, the proportion of Cr, As, Pb, Be, Mn, Co, Ni, Se, and Mo in the gypsum range from 82.8 to 99.9%, and the content has reached the level of ppm. When the blending ratio is controlled within 7%, the blending of antibiotic residues has little effect on the elemental composition of coal. The contents of Cr, Ni, Cu, Zn, and Ba in the products increased by 9.5 to 22.3%. This may mean when the blending ratio is increased, it will be harmful to the environment.


Assuntos
Oligoelementos , Antibacterianos , Carvão Mineral/análise , Cinza de Carvão/análise , Centrais Elétricas
4.
Environ Sci Pollut Res Int ; 26(20): 20920-20928, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115811

RESUMO

The effects of slag, fly ash (formed in boiler above 1500 °C), and experimental ash (formed in muffle furnace at 815 °C) on the formation of sulfur trioxide (SO3) were studied in a fixed bed rector. The results showed that the slag had the best catalytic effect on SO3 formation, the effect of fly ash was second, and the effect of experimental ash was the worst. The reason may be that the forms of iron in different samples were different. Iron in the experimental ash all existed in the form of Fe2O3. Iron in the fly ash mainly existed in the form of composite iron oxides, such as Fe0.3Mg0.7SiO3, Ca3Fe2(SiO4)3, and MgFe2O4. Iron in the slag also mainly existed in the form of composite iron oxides, such as CaFe2O4, MgFe2O4, and CaMgO0.88Fe0.12SiO4. The different forms of iron had different effects on SO3 formation. Composite iron oxides could produce more oxygen vacancies owing to lattice defects. This likely promoted the migration and regeneration of lattice oxygen and thus better promoted the formation of SO3 than Fe2O3. Moreover, MgFe2O4 and Ca3Fe2(SiO4)3 could better promote SO3 formation than CaMgO0.88Fe0.12SiO4 and Fe0.3Mg0.7SiO3. In addition, increasing the SO2 concentration and O2 concentration increased the SO3 concentration but increasing the SO2 concentration decreased the SO3 formation ratio.


Assuntos
Cinza de Carvão/química , Resíduos Industriais , Óxidos de Enxofre/química , Catálise , Compostos Férricos/química , Temperatura Alta , Oxigênio/química , Dióxido de Enxofre/química
5.
Environ Sci Pollut Res Int ; 26(16): 16105-16114, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972679

RESUMO

To reduce the environmental pollution caused by ammonium paratungstate (APT) production in the Ganzhou area in China, simulated experiments in laboratory and field experiments in cement kilns were performed. The migration characteristics of As in secondary residues (thermometallurgy and hydrometallurgy residues) from APT production in cement kilns were similar, and As in the residues existed in the form of sulfides. When the residues were fed at the kiln inlet, the As in the residues was completely distributed in the clinker after a new mass balance of As was reestablished in a very short time. When the residues were fed at the raw mill, the total input rate of As was far higher than the total output rate. Therefore, a part of As was circulated in the cement kiln, and only a small part of As was distributed in the clinker. In addition, the As concentration in the flue gas and the leaching concentration of As in the clinker were far below the limit value in the Chinese standard. For feeding rates below that are used in the field experiment, co-processing of secondary residues in a cement kiln fed at the kiln inlet is environmentally safe. However, if the secondary residues are consistently fed at the raw mill, the As concentration in the flue gas may gradually increase.


Assuntos
Arsênio/análise , Materiais de Construção , Poluentes Ambientais/análise , Compostos de Tungstênio/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Arsênio/química , China , Poluentes Ambientais/química , Metalurgia , Compostos de Tungstênio/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA