Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Transl Med ; 21(1): 261, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069596

RESUMO

BACKGROUND: Acute gouty arthritis is inflammatory joint arthritis. Gouty arthritis (GA) involves multiple pathological processes. Deposition of joints by monosodium urate (MSU) crystals has been shown to play a critical role in the injury process. Due to the different effects of MSU stimulation on the joints, the exact changes in the synovial fluid are unknown. We want to explore the changes in proteins and metabolites in the joints of gouty arthritis. Regulating various functional substances in the joint can reduce inflammation and pain symptoms. METHODS: 10 patients with gouty knee arthritis and 10 normal controls were selected from clinical, surgical cases. The biological function of the metabolome was assessed by co-expression network analysis. A molecular network based on metabolomic and proteomic data was constructed to study critical molecules. The fundamental molecular changes in the relevant pathways were then verified by western blot. RESULTS: Proteomic analysis showed that the expressions of proteases Cathepsin B, Cathepsin D, Cathepsin G, and Cathepsin S in synovial fluid patients with gouty arthritis were significantly increased. Enrichment analysis showed a positive correlation between lysosomal and clinical inflammatory cell shape changes. Untargeted metabolomic analysis revealed that lipids and lipoids accumulate, inhibit autophagic flux, and modulate inflammation and immunity in gouty arthritis patients. It was determined that the accumulation of lipid substances such as phospholipase A2 led to the imbalanced state of the autophagy-lysosome complex, and the differentially expressed metabolites of Stearoylcarnitine, Tetradecanoylcarnitine, Palmitoylcarnitine were identified (|log2 fold change|> 1.5, adjusted P value < 0.05 and variable importance in prediction (VIP) > 1.5). The autophagy-lysosomal pathway was found to be associated with gouty knee arthritis. Essential molecular alterations of multi-omics networks in gouty knee arthritis patients compared with normal controls involve acute inflammatory response, exosomes, immune responses, lysosomes, linoleic acid metabolism, and synthesis. CONCLUSIONS: Comprehensive analysis of proteomic and untargeted metabolomics revealed protein and characteristic metabolite alterations in gouty arthritis, it mainly involves lipids and lipid like molecules, phospholipase A2 and autophagic lysosomes. This study describes the pathological characteristics, pathways, potential predictors and treatment goals of gouty knee arthritis.


Assuntos
Artrite Gotosa , Humanos , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Proteômica , Ácido Úrico , Inflamação/metabolismo , Metabolômica , Fosfolipases A2/uso terapêutico , Lipídeos
2.
Lipids Health Dis ; 20(1): 151, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727932

RESUMO

BACKGROUND: Acylcarnitine is an intermediate product of fatty acid oxidation. It is reported to be closely associated with the occurrence of diabetic cardiomyopathy (DCM). However, the mechanism of acylcarnitine affecting myocardial disorders is yet to be explored. This current research explores the different chain lengths of acylcarnitines as biomarkers for the early diagnosis of DCM and the mechanism of acylcarnitines for the development of DCM in-vitro. METHODS: In a retrospective non-interventional study, 50 simple type 2 diabetes mellitus patients and 50 DCM patients were recruited. Plasma samples from both groups were analyzed by high throughput metabolomics and cluster heat map using mass spectrometry. Principal component analysis was used to compare the changes occurring in the studied 25 acylcarnitines. Multivariable binary logistic regression was used to analyze the odds ratio of each group for factors and the 95% confidence interval in DCM. Myristoylcarnitine (C14) exogenous intervention was given to H9c2 cells to verify the expression of lipid metabolism-related protein, inflammation-related protein expression, apoptosis-related protein expression, and cardiomyocyte hypertrophy and fibrosis-related protein expression. RESULTS: Factor 1 (C14, lauroylcarnitine, tetradecanoyldiacylcarnitine, 3-hydroxyl-tetradecanoylcarnitine, arachidic carnitine, octadecanoylcarnitine, 3-hydroxypalmitoleylcarnitine) and factor 4 (octanoylcarnitine, hexanoylcarnitine, decanoylcarnitine) were positively correlated with the risk of DCM. Exogenous C14 supplementation to cardiomyocytes led to increased lipid deposition in cardiomyocytes along with the obstacles in adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathways and affecting fatty acid oxidation. This further caused myocardial lipotoxicity, ultimately leading to cardiomyocyte hypertrophy, fibrotic remodeling, and increased apoptosis. However, this effect was mitigated by the AMPK agonist acadesine. CONCLUSIONS: The increased plasma levels in medium and long-chain acylcarnitine extracted from factors 1 and 4 are closely related to the risk of DCM, indicating that these factors can be an important tool for DCM risk assessment. C14 supplementation associated lipid accumulation by inhibiting the AMPK/ACC/CPT1 signaling pathway, aggravated myocardial lipotoxicity, increased apoptosis apart from cardiomyocyte hypertrophy and fibrosis were alleviated by the acadesine.


Assuntos
Carnitina/análogos & derivados , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/metabolismo , Metabolismo dos Lipídeos , Adulto , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Biomarcadores/sangue , Carnitina/sangue , Carnitina/química , Carnitina/farmacologia , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Ácidos Mirísticos/farmacologia , Ratos , Estudos Retrospectivos , Ribonucleosídeos/farmacologia , Fatores de Risco
3.
Anal Bioanal Chem ; 412(8): 1915-1923, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32030494

RESUMO

Due to its important role in tumor development and treatment, hyaluronidase (HAase) has been widely investigated in vitro and in vivo. However, such investigation was limited by the absence of sensitive and in situ detection methods. Herein, a hyaluronic acid (HA) hydrogel based on the fluorescence resonance energy transfer (FRET) effect was constructed for the detection of HAase. FITC and AuNPs were covalently coupled with two HA derivatives respectively to form a fluorescent donor-acceptor pair. In the presence of HAase, the hydrogel established by cross-linking of HA derivatives was hydrolyzed specifically. The FRET effect in the hydrogel disappeared and the fluorescence intensity increased proportionally with the changes in the concentration of the HAase. Experiments proved that the HAase sensing system had a wide response range (0.5-100 U/mL), good anti-interference, and excellent biocompatibility. When the hydrogel was used for 3D culture of lung cancer cells, in situ fluorescent response could be achieved. Graphical abstract.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Ácido Hialurônico/química , Hialuronoglucosaminidase/análise , Hidrogéis/química , Células A549 , Fluorescência , Humanos , Limite de Detecção
4.
Anal Bioanal Chem ; 410(9): 2413-2421, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29455283

RESUMO

Here, we utilized the ultrasonic emulsification technique to generate hyaluronic acid microspheres incorporating a fluorescence-based glucose biosensor. We synthesized a novel lanthanide ion luminophore based on Eu3+. Eu sulfosuccinimidyl dextran (Eu-dextran) and Alexa Fluor 647 sulfosuccinimidyl-ConA (Alexa Fluor 647-ConA) were encapsulated in hyaluronic acid hydrogel to generate microspheres. Glucose sensing was carried out using a fluorescence resonance energy transfer (FRET)-based assay principle. A proportional fluorescence intensity increase was found within a 0.5-10-mM glucose concentration range. The glucose-sensing strategy showed an excellent tolerance for potential interferents. Meanwhile, the fluorescent signal of hyaluronic acid microspheres was very stable after testing for 72 h in glucose solution. Overall, hyaluronic acid microspheres encapsulating sensing biomolecules offer a stable and biocompatible biosensor for a variety of applications including cell culture systems, tissue engineering, detection of blood glucose, etc. Graphical abstract We report an ingenious biosensor encapsulated in hyaluronic acid microspheres for monitoring of glucose. Glucose sensing is carried out using a fluorescence resonance energy transfer-based assay principle with a novel lanthanide ions luminophore. The glucose detection system has excellent biocompatibility and stability for monitoring of glucose.


Assuntos
Glicemia/análise , Európio/química , Transferência Ressonante de Energia de Fluorescência/métodos , Ácido Hialurônico/química , Substâncias Luminescentes/química , Técnicas Biossensoriais/métodos , Carbocianinas/química , Complexos de Coordenação/química , Dextranos/química , Células Hep G2 , Humanos
5.
J Colloid Interface Sci ; 657: 580-589, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071807

RESUMO

All-inorganic lead halide perovskite nanocrystals exhibiting bright luminescence have great potential as fluorescence elements for optical encoding. However, their limited stability in water hinders the application in biosensing. In this study, novel optical encoded microbeads based on CsPbX3 (X = Cl, Br) nanocrystals are developed and applied in bead-based suspension arrays for the first time. Through the in-situ crystallization of CsPbX3 nanocrystals within mesoporous silica nano-templates (MSNs), accompanied by mesopores collapse after sintering, CsPbX3@MSNs (X3M) nanocomposites with uniform morphology and stable fluorescence intensity in aqueous solutions for up to 50 days are obtained. By assembling X3M with microspheres to form a host-guest structure, an optical encoding microbead (MX3M) library is established by varying the X3M ratio, halide composition, and the size of host microspheres, which can be easily decoded under multi-channel flow cytometer. As a result, MX3M exhibits outstanding capacity for specific target capture and negligible nonspecific absorption performance in the multiplex nucleic acid detection of respiratory viruses, with a low limit of detection (10 copies/rxn). This result highlights the tremendous potential of MX3M encoded microbeads constructed based on CsPbX3 nanocrystals for multiplexed bioassays.

6.
J Med Chem ; 67(13): 10530-10547, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988222

RESUMO

The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Desenho de Fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/química , Relação Estrutura-Atividade , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Estrutura Molecular
7.
Talanta ; 273: 125903, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503120

RESUMO

Single-nanoparticle counting (SNPC) based on fluorescent tag (FT) stands out for its capacity to achieve amplification-free and sensitive detection of biomarkers. The stability and luminescence of FT are important to the sensitivity and reliability of SPNC. In this work, we developed novel perovskite/silica nanocomposites by in-situ nanoconfined growth of CsPbBr3 nanocrystals inside mesoporous structure of silica nanoparticles. PbBr(OH) was formed in an alkaline-assisted reaction triggered by water on the surface of CsPbBr3 nanocrystals. The as-obtained nanocomposites, featuring dual protection from silica matrix and PbBr(OH), exhibited high absolute photoluminescence quantum yield (PLQY) of 86.5% and demonstrated outstanding PL stability confronting with water, heat, ultrasound and UV-irradiation, which is desired by SNPC-based biosensor. Thereafter, these nanocomposites were used to construct an operationally friendly SNPC assay for the amplification-free quantification of cancer-associated miRNA. Quantitative detection of miRNA could be accomplished by directly counting the number of nanocomposites using a flow cytometer in this assay. This strategy did not ask for multiple washing steps and demonstrated specific and sensitive detection of miRNA 21, which exhibited a dynamic range of 1-1000 pM and limit of detection of 79 amol. The employment of highly stable perovskite/silica nanocomposites improved the test reliability and stability of SNPC, revealing the vast potential of perovskites in biosensing.


Assuntos
Compostos de Cálcio , MicroRNAs , Nanocompostos , Nanopartículas , Óxidos , Titânio , Dióxido de Silício , Reprodutibilidade dos Testes , Água , Corantes
8.
Elife ; 122023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37970848

RESUMO

Background: To systematically identify cell types in the human ligament, investigate how ligamental cell identities, functions, and interactions participated in the process of ligamental degeneration, and explore the changes of ligamental microenvironment homeostasis in the disease progression. Methods: Using single-cell RNA sequencing and spatial RNA sequencing of approximately 49,356 cells, we created a comprehensive cell atlas of healthy and degenerated human anterior cruciate ligaments. We explored the variations of the cell subtypes' spatial distributions and the different processes involved in the disease progression, linked them with the ligamental degeneration process using computational analysis, and verified findings with immunohistochemical and immunofluorescent staining. Results: We identified new fibroblast subgroups that contributed to the disease, mapped out their spatial distribution in the tissue and revealed two dynamic trajectories in the process of the degenerative process. We compared the cellular interactions between different tissue states and identified important signaling pathways that may contribute to the disease. Conclusions: This cell atlas provides the molecular foundation for investigating how ligamental cell identities, biochemical functions, and interactions contributed to the ligamental degeneration process. The discoveries revealed the pathogenesis of ligamental degeneration at the single-cell and spatial level, which is characterized by extracellular matrix remodeling. Our results provide new insights into the control of ligamental degeneration and potential clues to developing novel diagnostic and therapeutic strategies. Funding: This study was funded by the National Natural Science Foundation of China (81972123, 82172508, 82372490) and 1.3.5 Project for Disciplines of Excellence of West China Hospital Sichuan University (ZYJC21030, ZY2017301).


Assuntos
Ligamento Cruzado Anterior , Transcriptoma , Humanos , Ligamento Cruzado Anterior/metabolismo , Ligamento Cruzado Anterior/patologia , Perfilação da Expressão Gênica , Matriz Extracelular , Progressão da Doença
9.
J Clin Hypertens (Greenwich) ; 25(2): 137-145, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639984

RESUMO

This study aimed to probe the effects of low-dose irbesartan and hydrochlorothiazide in combination with levamlodipine at different times on the circadian rhythm of blood pressure, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) levels in patients with non-dipper hypertension (NDH). In this prospective randomized controlled trial, 124 patients with NDH who visited our hospital between August 2018 and July 2021 were enrolled and divided into morning (62 patients) and night (62 patients) medication groups according to the random number table method. All patients received low-dose irbesartan and hydrochlorothiazide combined with levamlodipine, with the morning medication group taking the medication between 7:00 and 10:00 and the night medication group taking the medication between 19:00 and 22:00 for 24 weeks. The effect of antihypertensive medication in both groups was measured, and changes in ambulatory blood pressure, blood pressure circadian rhythm, left ventricular structure, vascular endothelial function, MMPs, and TIMPs levels were observed before treatment initiation and after 24 weeks of treatment in both groups. The percentage of the dipper type was higher in the night medication group than in the morning medication group, while the percentage of the non-dipper type was lower in the morning medication group (p < .05). Low-dose irbesartan and hydrochlorothiazide combined with levamlodipine at different times can effectively treat NDH, but bedtime dosing is more beneficial in reducing nocturnal blood pressure, reversing NDH, improving the circadian rhythm of blood pressure, left ventricular structure, regulating vascular endothelial function, increasing MMPs levels, and reducing TIMP levels.


Assuntos
Hipertensão , Hipotensão , Humanos , Hipertensão/tratamento farmacológico , Pressão Sanguínea/fisiologia , Irbesartana/uso terapêutico , Hidroclorotiazida/farmacologia , Hidroclorotiazida/uso terapêutico , Monitorização Ambulatorial da Pressão Arterial , Estudos Prospectivos , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Ritmo Circadiano/fisiologia
10.
CNS Neurosci Ther ; 29(10): 2857-2872, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37063066

RESUMO

INTRODUCTION: Spinal cord injury (SCI) is a central nervous system injury that is primarily traumatic and manifests as motor, sensory, and autonomic dysfunction below the level of damage. Our previous studies confirmed the ability of zinc to protect mitochondria, protect neurons and promote spinal cord recovery. However, the role of zinc in Parthanatos is unknown. AIM: We investigated the effects of zinc in Parthanatos from oxidative stress and mitophagy. We elucidated the role of SIRT3 in providing new ideas for treating spinal cord injury. THE RESULTS: Zinc protected SCI mice by regulating Parthanatos. On the one hand, zinc eliminated ROS directly through SIRT3 deacetylation targeting SOD2 to alleviate Parthanatos. On the other hand, zinc eliminated ROS indirectly through SIRT3-mediated promotion of mitophagy to alleviate Parthanatos. CONCLUSION: Zinc defends against Parthanatos and promotes functional recovery after spinal cord injury through SIRT3-mediated anti-oxidative stress and mitophagy.


Assuntos
Parthanatos , Sirtuína 3 , Traumatismos da Medula Espinal , Camundongos , Animais , Sirtuína 3/metabolismo , Zinco/farmacologia , Espécies Reativas de Oxigênio , Mitofagia , Estresse Oxidativo/fisiologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/metabolismo
11.
Oxid Med Cell Longev ; 2021: 4331625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373765

RESUMO

Spinal cord injury (SCI) is a traumatic disease that can cause severe nervous system dysfunction. SCI often causes spinal cord mitochondrial dysfunction and produces glucose metabolism disorders, which affect neuronal survival. Zinc is an essential trace element in the human body and plays multiple roles in the nervous system. This experiment is intended to evaluate whether zinc can regulate the spinal cord and neuronal glucose metabolism and promote motor functional recovery after SCI. Then we explore its molecular mechanism. We evaluated the function of zinc from the aspects of glucose uptake and the protection of the mitochondria in vivo and in vitro. The results showed that zinc elevated the expression level of GLUT4 and promoted glucose uptake. Zinc enhanced the expression of proteins such as PGC-1α and NRF2, reduced oxidative stress, and promoted mitochondrial production. In addition, zinc decreased neuronal apoptosis and promoted the recovery of motor function in SCI mice. After administration of AMPK inhibitor, the therapeutic effect of zinc was reversed. Therefore, we concluded that zinc regulated the glucose metabolism of the spinal cord and neurons and promoted functional recovery after SCI through the AMPK pathway, which is expected to become a potential treatment strategy for SCI.


Assuntos
Adenilato Quinase/metabolismo , Glucose/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Zinco/farmacologia , Animais , Feminino , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Células PC12 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Transdução de Sinais , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/tratamento farmacológico , Regeneração da Medula Espinal , Zinco/uso terapêutico
12.
CNS Neurosci Ther ; 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951302

RESUMO

AIM: Spinal cord injury (SCI) involves multiple pathological processes. Ferroptosis has been shown to play a critical role in the injury process. We wanted to explore whether zinc can inhibit ferroptosis, reduce inflammation, and then exert a neuroprotective effect. METHODS: The Alice method was used to establish a spinal cord injury model. The Basso Mouse Scale (BMS), Nissl staining, hematoxylin-eosin staining, and immunofluorescence analysis were used to investigate the protective effect of zinc on neurons on spinal cord neurons and the recovery of motor function. The regulation of the nuclear factor E2/heme oxygenase-1 (NRF2/HO-1) pathway was assessed, the levels of essential ferroptosis proteins were measured, and the changes in mitochondria were confirmed by transmission electron microscopy and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide (JC-1) staining. In vitro experiments using VSC4.1 (spinal cord anterior horn motor neuroma cell line), 4-hydroxynonenal (4HNE), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), lipid peroxides, and finally the levels of inflammatory factors were detected to assess the effect of zinc. RESULTS: Zinc reversed behavioral and structural changes after SCI. Zinc increased the expression of NRF2/HO-1, thereby increasing the content of glutathione peroxidase 4 (GPX4), SOD, and GHS and reducing the levels of lipid peroxides, MDA, and ROS. Zinc also rescued injured mitochondria and effectively reduced spinal cord injury and the levels of inflammatory factors, and the NRF2 inhibitor Brusatol reversed the effects of zinc. CONCLUSION: Zinc promoted the degradation of oxidative stress products and lipid peroxides through the NRF2/HO-1 and GPX4 signaling pathways to inhibit ferroptosis in neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA