Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 42(4): 329-345, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38153856

RESUMO

Pulmonary hypertension (PH) is an intractable, severe, and progressive cardiopulmonary disease. Recent findings suggest that human umbilical cord mesenchymal stromal cells (HUCMSCs) and HUCMSC-derived exosomes (HUCMSC-Exos) possess potential therapeutic value for PH. However, whether they have beneficial effects on hypoxic pulmonary hypertension (HPH) is unclear. Exos are released into the extracellular environment by the fusion of intracellular multivesicular bodies with the cell membrane, and they play an important role in cellular communication. Exos ameliorate immune inflammation levels, alter macrophage phenotypes, regulate mitochondrial metabolic function, and inhibit pulmonary vascular remodeling, thereby improving PH. Macrophages are important sources of cytokines and other transmitters and can promote the release of cytokines, vasoactive molecules, and reactive oxygen species, all of which are associated with pulmonary vascular remodeling. Therefore, the aim of this study was to investigate whether HUCMSC-Exos could improve the lung inflammatory microenvironment and inhibit pulmonary vascular remodeling by targeting macrophages and identifying the underlying mechanisms. The results showed that HUCMSC-Exos promoted M2 macrophage polarization, decreased pro-inflammatory factors, increased IL-10 levels, and inhibited IL-33/ST2 axis expression, thereby inhibiting hypoxia-induced proliferation of pulmonary artery smooth muscle cells and ameliorating HPH.


Assuntos
Exossomos , Hipertensão Pulmonar , Células-Tronco Mesenquimais , Hipertensão Arterial Pulmonar , Humanos , Camundongos , Animais , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/metabolismo , Exossomos/metabolismo , Remodelação Vascular , Cordão Umbilical/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Stem Cells ; 42(8): 720-735, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717187

RESUMO

Hypoxic pulmonary hypertension (HPH) is characterized by progressive pulmonary vasoconstriction, vascular remodeling, and right ventricular hypertrophy, causing right heart failure. This study aimed to investigate the therapeutic effects of exosomes from Tibetan umbilical cord mesenchymal stem cells on HPH via the TGF-ß1/Smad2/3 pathway, comparing them with exosomes from Han Chinese individuals. An HPH rat model was established in vivo, and a hypoxia-induced injury in the rat pulmonary artery smooth muscle cells (rPASMCs) was simulated in vitro. Exosomes from human umbilical cord mesenchymal stem cells were administered to HPH model rats or added to cultured rPASMCs. The therapeutic effects of Tibetan-mesenchymal stem cell-derived exosomes (Tibetan-MSC-exo) and Han-mesenchymal stem cell-derived exosomes (Han-MSC-exo) on HPH were investigated through immunohistochemistry, western blotting, EdU, and Transwell assays. The results showed that Tibetan-MSC-exo significantly attenuated pulmonary vascular remodeling and right ventricular hypertrophy in HPH rats compared with Han-MSC-exo. Tibetan-MSC-exo demonstrated better inhibition of hypoxia-induced rPASMCs proliferation and migration. Transcriptome sequencing revealed upregulated genes (Nbl1, Id2, Smad6, and Ltbp1) related to the TGFß pathway. Nbl1 knockdown enhanced hypoxia-induced rPASMCs proliferation and migration, reversing Tibetan-MSC-exo-induced downregulation of TGFß1 and p-Smad2/3. Furthermore, TGFß1 overexpression hindered the therapeutic effects of Tibetan-MSC-exo and Han-MSC-exo on hypoxic injury. These findings suggest that Tibetan-MSC-exo favors HPH treatment better than Han-MSC-exo, possibly through the modulation of the TGFß1/Smad2/3 pathway via Nbl1.


Assuntos
Exossomos , Hipertensão Pulmonar , Hipóxia , Células-Tronco Mesenquimais , Remodelação Vascular , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Remodelação Vascular/fisiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/patologia , Ratos , Hipóxia/metabolismo , Ratos Sprague-Dawley , Masculino , Tibet , Humanos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Fator de Crescimento Transformador beta1/metabolismo , Proliferação de Células , Transdução de Sinais , Modelos Animais de Doenças , Proteína Smad2/metabolismo
3.
Biophys J ; 123(12): 1722-1734, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38773770

RESUMO

Cervical cancer ranks fourth in female mortality. Since the mechanisms for pathogenesis of cervical cancer are still poorly understood, the effective treatment options are lacking. Beclin-1 exhibits an inhibitory role in cervical cancer via suppressing the proliferation, invasion, and migration of cervical cancer cells. It is reported that USP19 removes the K11-linked ubiquitination of Beclin-1 to protect Beclin-1 from proteasomal degradation. Interestingly, we found that hypoxia induced a significant decrease of both Beclin-1 and USP19, suggesting that hypoxia could dually inhibit the protein level of Beclin-1 through a type 2 coherent feed-forward loop (C2-FFL, hypoxia ⊸ Beclin-1 integrating with hypoxia ⊸ USP19 → Beclin-1) to promote the occurrence and development of cervical cancer. Furthermore, mathematical modeling revealed that under the hypoxic environment of solid tumor, the hypoxia/USP19/Beclin-1 coherent feed-forward loop could significantly reduce the protein level of Beclin-1, greatly enhance the sensitivity of Beclin-1 to hypoxia, strikingly restrict the heterogeneity of Beclin-1, and contribute to the low positive rate of Beclin-1 in cervical cancer. It is expected to have significance for elucidating the underlying mechanisms of the occurrence and development of cervical cancer and to provide novel targets and strategies for prevention and treatment of cervical cancer.


Assuntos
Proteína Beclina-1 , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Proteína Beclina-1/metabolismo , Humanos , Modelos Biológicos , Retroalimentação Fisiológica , Hipóxia Celular , Linhagem Celular Tumoral
4.
Sheng Li Xue Bao ; 76(1): 33-44, 2024 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-38444129

RESUMO

The present study aimed to investigate the effect of human umbilical cord mesenchymal stem cells (MSCs)-derived exosomes (MSCs-Exo) on mice with hypoxic pulmonary hypertension (HPH). MSCs were isolated and cultured from human umbilical cords under aseptic conditions, and exosomes were extracted from the supernatants and identified. Healthy SPF C57BL/6 mice were randomly divided into three groups: normoxic group, hypoxic group, and hypoxic+MSCs-Exo group. Mice in the hypoxic group and the hypoxic+MSCs-Exo group were maintained for 28 d at an equivalent altitude of 5 000 m in a hypobaric chamber to establish HPH mouse model. The mice in the hypoxic+MSCs-Exo group were injected with MSCs-Exo via tail vein before hypoxia and on days 1, 3, 5 and 9 of hypoxia, and the mice in the other two groups were injected with PBS. At the end of the experiment, echocardiography was performed to detect pulmonary arterial acceleration time/pulmonary arterial ejection time ratio (PAAT/PET), right ventricular free wall thickness, and right ventricular hypertrophy index RV/(LV+S). HE staining was performed to observe the lung tissue morphology. EVG staining was performed to observe elastic fiber hyperplasia. Immunohistochemistry was performed to detect α smooth muscle actin (α-SMA) expression in lung tissue. Immunofluorescence staining was used to detect macrophage infiltration in lung tissue. qPCR was performed to detect IL-1ß and IL-33 in lung tissue, and cytometric bead array was performed to detect IL-10 secretion. Western blotting was used to detect the M1 macrophage marker iNOS, M2 macrophage marker Arg-1 and IL-33/ST2 pathway proteins in lung tissues. The results showed that hypoxia increased pulmonary artery pressure and pulmonary vascular remodeling, increased macrophage infiltration, IL-1ß and IL-33 expression (P < 0.05) and upregulated the IL-33/ST2 pathway (P < 0.05). Compared with the hypoxic group, MSCs-Exo treatment increased PAAT/PET (P < 0.05), decreased right ventricular free wall thickness (P < 0.05), right ventricular hypertrophy index RV/(LV+S) (P < 0.05), α-SMA expression in small pulmonary vessels (P < 0.05), and inflammatory factors including IL-1ß and IL-33 expression in lung tissue, however increased IL-10 secretion (P < 0.05). In addition, MSCs-Exo treatment upregulated Arg-1 and downregulated iNOS and IL-33/ST2 (P < 0.05). The results suggest that MSC-Exo may alleviate HPH through their immunomodulatory effects.


Assuntos
Exossomos , Hipertensão Pulmonar , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-10 , Interleucina-33 , Hipertrofia Ventricular Direita , Proteína 1 Semelhante a Receptor de Interleucina-1 , Remodelação Vascular , Hipóxia , Pulmão
5.
Angew Chem Int Ed Engl ; 63(13): e202319489, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38308123

RESUMO

Alveolar echinococcosis (AE) is a zoonotic parasitic disease, resulting from being infected with the metacestode larvae of the tapeworm Echinococcus multilocularis (E. multilocularis). Novel prophylactic and therapeutic interventions are urgently needed since the current chemotherapy displays limited efficiency in AE treatment. Bioengineered nano cellular membrane vesicles are widely used for displaying the native conformational epitope peptides because of their unique structure and biocompatibility. In this study, four T-cells and four B-cells dominant epitope peptides of E. multilocularis with high immunogenicity were engineered into the Vero cell surface to construct a membrane vesicle nanovaccine for the treatment of AE. The results showed that the nanovesicle vaccine can efficiently activate dendritic cells, induce specific T/B cells to form a mutually activated circuit, and inhibit E. multilocularis infection. This study presents for the first time a nanovaccine strategy that can completely eliminate the burden of E. multilocularis.


Assuntos
Equinococose , Echinococcus multilocularis , Vacinas , Animais , Imunoterapia , Nanovacinas , Epitopos , Peptídeos
6.
Blood Cells Mol Dis ; 98: 102707, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334504

RESUMO

High-altitude polycythemia (HAPC) is a chronic mountain sickness characterized by multiple severe ill-effects. Its pathogenesis is still unclear, and till date, no study has been conducted to investigate the plasma exome profile of Tibetan patients with HAPC. In this study, we aimed to elucidate the pathogenesis of HAPC by determining the microRNA (miRNA) signatures. We compared the plasma exosome miRNA expression profiles of eight patients with HAPC and eight healthy controls using next-generation miRNA sequencing. Further, we extracted and identified plasma exosomes using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. We used quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to validate differentially expressed plasma exosomal miRNAs. Finally, we analyzed the diagnostic values of the differentially expressed miRNAs for HAPC using receiver operating characteristic (ROC) curves. We detected 2007 miRNAs from confirmed plasma exosomes, including 1342 known miRNAs and 665 newly predicted miRNAs. We verified the expression of the top 10 differentially expressed miRNAs via qRT-PCR. Patients with HAPC showed significantly upregulated hsa-miR-122-5p, hsa-miR-423-5p, hsa-miR-4433b-3p, hsa-miR-1291, and hsa-miR-106b-5p expression levels, while hsa-miR-200c-3p expression was downregulated. This study may provide background knowledge for future studies on HAPC studies, which may further facilitate the development of novel therapies against this common disease.


Assuntos
Doença da Altitude , Exossomos , MicroRNAs , Policitemia , Humanos , Doença da Altitude/genética , Policitemia/etiologia , Policitemia/genética , Altitude , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo
7.
Genomics ; 114(3): 110359, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35364265

RESUMO

Tibetan Mastiff has adapted to the extreme environment of the Qinghai-Tibetan Plateau. Yet, the underlying mechanisms of its high-altitude-adaptation and origin remains elusive. Here, we generated the draft genomes of Mongolia Mastiff, Tibetan Mastiff, and Canis Lupus. The phylogenetic tree uncovered that Tibetan Mastiff and Mongolia Mastiff were derived from Canis Lupus species. The comparative genomic analyses identified that the expansion of gene families related to DNA repair and damage response, and contraction related to ATPase activity revealed the genetic adaptations of Tibetan Mastiff and Canis Lupus to high altitude. In addition, the Tibetan Mastiff and Canis Lupus had signals of positive selection for genes involved in fatty-acid α/ß- oxidation for highland adaptation. Notably, the positively selected TERT of Tibetan Mastiff should be an adaptive trait for correcting DNA damage. These findings suggested that the Tibetan Mastiff and Canis Lupus evolves basic strategies for adaptation to high altitude.


Assuntos
Lobos , Cães , Animais , Lobos/genética , Filogenia , Tibet , Altitude , Mongólia , Adaptação Fisiológica/genética , Genômica
8.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834171

RESUMO

Kidney disease is a major global health concern, affecting millions of people. Nephrologists have shown interest in platelets because of coagulation disorders caused by renal diseases. With a better understanding of platelets, it has been found that these anucleate and abundant blood cells not only play a role in hemostasis, but also have important functions in inflammation and immunity. Platelets are not only affected by kidney disease, but may also contribute to kidney disease progression by mediating inflammation and immune effects. This review summarizes the current evidence regarding platelet abnormalities in renal disease, and the multiple effects of platelets on kidney disease progression. The relationship between platelets and kidney disease is still being explored, and further research can provide mechanistic insights into the relationship between thrombosis, bleeding, and inflammation related to kidney disease, and elucidate targeted therapies for patients with kidney disease.


Assuntos
Imunidade Inata , Nefropatias , Humanos , Plaquetas , Hemostasia , Inflamação , Nefropatias/complicações , Progressão da Doença
9.
Sheng Li Xue Bao ; 75(1): 130-136, 2023 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-36859842

RESUMO

The alteration of pulmonary artery pressure is an important physiological indicator to reflect the organism's adaptation to acclimatization or the pathological injury in response to high-altitude hypoxic environment. The effects of hypoxic stress at different altitudes for different time on pulmonary artery pressure are different. There are many factors involved in the changes of pulmonary artery pressure, such as the contraction of pulmonary arterial smooth muscle, hemodynamic changes, abnormal regulation of vascular activity and abnormal changes of cardiopulmonary function. Understanding of the regulatory factors of pulmonary artery pressure in hypoxic environment is crucial in clarifying the relevant mechanisms of hypoxic adaptation, acclimatization, prevention, diagnosis, treatment and prognosis of acute and chronic high-altitude diseases. In recent years, great progress has been made in the study regarding the factors affecting pulmonary artery pressure in response to high-altitude hypoxic stress. In this review, we discuss the regulatory factors and intervention measures of pulmonary arterial hypertension induced by hypoxia from the aspects of hemodynamics of circulatory system, vasoactive state and changes of cardiopulmonary function.


Assuntos
Altitude , Pressão Arterial , Humanos , Aclimatação , Hipóxia , Músculo Liso
10.
Sheng Li Xue Bao ; 75(5): 714-726, 2023 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-37909142

RESUMO

Preeclampsia and intrauterine growth restriction (IUGR) of the fetus are the two most common pregnancy complications worldwide, affecting 5%-10% of pregnant women. Preeclampsia is associated with significantly increased maternal and fetal morbidity and mortality. Hypoxia-induced uteroplacental dysfunction is now recognized as a key pathological factor in preeclampsia and IUGR. Reduced oxygen supply (hypoxia) disrupts mitochondrial and endoplasmic reticulum (ER) function. Hypoxia has been shown to alter mitochondrial reactive oxygen species (ROS) homeostasis and induce ER stress. Hypoxia during pregnancy is associated with excessive production of ROS in the placenta, leading to oxidative stress. Oxidative stress occurs in a number of human diseases, including high blood pressure during pregnancy. Studies have shown that uterine placental tissue/cells in preeclampsia and IUGR show high levels of oxidative stress, which plays an important role in the pathogenesis of both the complications. This review summarizes the role of hypoxia-induced mitochondrial oxidative stress and ER stress in the pathogenesis of preeclampsia/IUGR and discusses the potential therapeutic strategies targeting oxidative stress to treat both the pregnancy complications.


Assuntos
Pré-Eclâmpsia , Complicações na Gravidez , Gravidez , Feminino , Humanos , Placenta , Retardo do Crescimento Fetal/etiologia , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/patologia , Espécies Reativas de Oxigênio , Hipóxia/patologia , Complicações na Gravidez/patologia , Estresse do Retículo Endoplasmático
11.
Biochem Biophys Res Commun ; 540: 67-74, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450482

RESUMO

Non-alcoholic steatohepatitis (NASH) is one of the most common chronic liver diseases. Chronic hypoxia is related to the pathogenesis of NASH. HIF-2α is the key gene for lipid metabolism, fibrosis, and inflammation in many cells. To identify the molecular mechanism through which hypoxia exposure increases the morbidity of NASH, the expression level of HIF-2α was analysed and was found to be upregulated in human NASH liver. By constructing the NASH model of chronic hypoxia, the mice were housed at an altitude of 4300 m for 4 and 8 weeks, compared to the control groups that were housed at an altitude of 50 m. Histological studies showed that exposure to hypoxia promoted the activation of NF-κB by upregulating the expression of HIF-2α, as well as that of the genes related to inflammation and fibrosis, thereby promoting the development of NASH both in vivo and in vitro. In summary, hypoxia-exposure could upregulate HIF-2α to aggravate tissue fibrosis and inflammation by upregulating inflammation-related genes and fibrosis-related genes metabolites via the activated NF-κB pathway in NASH. Our results suggest that for NASH patients living at high altitudes, drug therapy could focus on treating tissue fibrosis and inflammation, and thus provides a new strategy for NASH treatment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cirrose Hepática/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Células Hep G2 , Humanos , Hipóxia/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Palmitatos/farmacologia , Fator de Transcrição RelA/metabolismo , Regulação para Cima
12.
Int J Med Sci ; 18(7): 1618-1627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746578

RESUMO

Hypoxia affects proliferation, differentiation, as well as death of cardiomyocyte, and plays an important role in the development of myocardial ischemia. However, the detailed mechanisms through which hypoxia regulates cardiomyocyte ferroptosis have not been explored. In this study, we revealed that hypoxia suppresses the proliferation, migration, and erastin-induced ferroptosis of H9c2 cells. First, we confirmed the upregulation of SENP1 in H9c2 cells cultured under hypoxic conditions. Through adenovirus-mediated SENP1 gene transfection, we demonstrated that SENP1 overexpression could enhance H9c2 cell proliferation and migration while also protecting H9c2 cells from erastin-induced ferroptosis. Furthermore, through immunoprecipitation and western blotting, we confirmed that SENP1 mediated deSUMOylation of HIF-1α and ACSL4 in H9c2 cells. In conclusion, this study describes the underlying mechanism through which hypoxia upregulates SENP1 expression, in turn protecting against ferroptosis via the regulation of HIF-1α and ACSL4 deSUMOylation. Our findings provide a theoretical foundation for the development of novel therapeutics for ischemic heart diseases.


Assuntos
Hipóxia Celular/genética , Cisteína Endopeptidases/metabolismo , Ferroptose/genética , Miócitos Cardíacos/patologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Coenzima A Ligases/metabolismo , Cisteína Endopeptidases/genética , Ferroptose/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Piperazinas/farmacologia , Ratos , Transdução de Sinais/genética , Sumoilação/genética , Regulação para Cima
13.
Korean J Parasitol ; 59(3): 291-296, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34218601

RESUMO

Alveolar echinococcosis (AE) is considered as a fatal zoonosis caused by the larvae of Echinococcus multilocularis. The lungs and brain are the most common metastatic organs. We report a human case of hepatic alveolar echinococcosis accompanied by lung and brain metastasis. In particular, the patient had a history of tuberculosis and the lung lesions were easily misdiagnosed as lung abscesses. The lesions of liver and lung underwent radical resection and confirmed as alveolar echinococcosis by pathological examination. The patient had no surgical complications after operation and was discharged after symptomatic treatment. Unfortunately, the patient later developed multiple intracerebral AE metastases. We required the patient to take albendazole orally for life and follow up.


Assuntos
Neoplasias Encefálicas , Equinococose Hepática , Equinococose , Echinococcus multilocularis , Animais , Neoplasias Encefálicas/diagnóstico , Equinococose Hepática/diagnóstico , Equinococose Hepática/tratamento farmacológico , Equinococose Hepática/cirurgia , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Zoonoses
14.
Mol Biol Evol ; 36(10): 2227-2237, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31362306

RESUMO

A key question in evolutionary biology concerns the relative importance of different sources of adaptive genetic variation, such as de novo mutations, standing variation, and introgressive hybridization. A corollary question concerns how allelic variants derived from these different sources may influence the molecular basis of phenotypic adaptation. Here, we use a protein-engineering approach to examine the phenotypic effect of putatively adaptive hemoglobin (Hb) mutations in the high-altitude Tibetan wolf that were selectively introgressed into the Tibetan mastiff, a high-altitude dog breed that is renowned for its hypoxia tolerance. Experiments revealed that the introgressed coding variants confer an increased Hb-O2 affinity in conjunction with an enhanced Bohr effect. We also document that affinity-enhancing mutations in the ß-globin gene of Tibetan wolf were originally derived via interparalog gene conversion from a tandemly linked ß-globin pseudogene. Thus, affinity-enhancing mutations were introduced into the ß-globin gene of Tibetan wolf via one form of intragenomic lateral transfer (ectopic gene conversion) and were subsequently introduced into the Tibetan mastiff genome via a second form of lateral transfer (introgression). Site-directed mutagenesis experiments revealed that the increased Hb-O2 affinity requires a specific two-site combination of amino acid replacements, suggesting that the molecular underpinnings of Hb adaptation in Tibetan mastiff (involving mutations that arose in a nonexpressed gene and which originally fixed in Tibetan wolf) may be qualitatively distinct from functionally similar changes in protein function that could have evolved via sequential fixation of de novo mutations during the breed's relatively short duration of residency at high altitude.


Assuntos
Aclimatação/genética , Altitude , Canidae/genética , Introgressão Genética , Hemoglobinas/fisiologia , Substituição de Aminoácidos , Animais , Conversão Gênica , Modelos Moleculares , Mutação
15.
Blood Cells Mol Dis ; 84: 102446, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32470757

RESUMO

Excessive erythrocytosis (EE) is a characteristic of chronic mountain sickness (CMS). Currently, the pathogenesis of CMS remains unclear. This study was intended to investigate the role of EPAS1 in the proliferation of erythroblasts in CMS. Changes of HIF-1α and EPAS1/HIF-2α in the bone marrow erythroblasts of 21 patients with CMS and 14 control subjects residing at the same altitudes were determined by RT-qPCR and western blotting. We also developed a lentiviral vector, Lv-EPAS1/sh-EPAS1, to over-express/silence EPAS1 in K562 cells. Cells cycle and proliferation were detected by flow cytometry. Transcriptome analyses were carried out on Illumina. CMS patients showed a higher expression of EPAS1/HIF-2α in the bone marrow erythroblasts than those of controls. Variations in EPAS1 expression in CMS patients were positively correlated with RBC levels, and negatively correlated with SaO2. Over-expressing of EPAS1 in K562 cells accelerated the erythroid cells cycle progression and promoted the erythroid cells proliferation-and vice versa. Transcriptome data indicated that proliferation-related DEGs were significantly enriched in EPAS1 overexpression/silencing K562 cells. Our results suggest that EPAS1 might participate in the pathogenesis of EE by regulating the proliferation of erythroblasts.


Assuntos
Doença da Altitude/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Eritroblastos/patologia , Adulto , Doença da Altitude/genética , Doença da Altitude/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclo Celular , Linhagem Celular , Proliferação de Células , Doença Crônica , Eritroblastos/citologia , Eritroblastos/metabolismo , Humanos , Pessoa de Meia-Idade , Transcriptoma , Regulação para Cima
16.
Platelets ; 31(1): 33-42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30721642

RESUMO

Exposure to hypoxia, through ascension to high altitudes (HAs), air travel, or human disease, is associated with an increased incidence of thrombosis in some settings. Mechanisms underpinning this increased thrombosis risk remain incompletely understood, and the effects of more sustained hypoxia on the human platelet molecular signature and associated functional responses have never been examined. We examined the effects of prolonged (≥2 months continuously) hypobaric hypoxia on platelets isolated from subjects residing at HA (3,700 meters) and, for comparison, matched subjects residing under normoxia conditions at sea level (50 meters). Using complementary transcriptomic, proteomic, and functional methods, we identified that the human platelet transcriptome is markedly altered under prolonged exposure to hypobaric hypoxia at HA. Among the significantly, differentially expressed genes (mRNA and protein), were those having canonical roles in platelet activation and thrombosis, including membrane glycoproteins (e.g. GP4, GP6, GP9), integrin subunits (e.g. ITGA2B), and alpha-granule chemokines (e.g. SELP, PF4V1). Platelets from subjects residing at HA were hyperactive, as demonstrated by increased engagement and adhesion to fibrinogen, fewer alpha granules by transmission electron microscopy, increased circulating PF4 and ADP, and significantly enhanced clot retraction. In conclusion, we identify that prolonged hypobaric hypoxia exposure due to HA alters the platelet transcriptome and proteome, triggering increased functional activation responses that may contribute to thrombosis. Our findings may also have relevance across a range of human diseases where chronic hypoxia, platelet activation, and thrombosis are increased.


Assuntos
Altitude , Plaquetas/metabolismo , Hipóxia/metabolismo , Proteoma , Transcriptoma , Adulto , Biomarcadores , Plaquetas/ultraestrutura , Biologia Computacional/métodos , Citoesqueleto/metabolismo , Exposição Ambiental , Perfilação da Expressão Gênica , Humanos , Masculino , Ativação Plaquetária , Adesividade Plaquetária , Proteômica/métodos , Trombose/etiologia , Trombose/metabolismo
17.
Biochem Biophys Res Commun ; 516(1): 120-126, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196622

RESUMO

Limited is known about role of gut microbiota in the metabolism of high-altitude-living herbivores, and potential co-evolution between gut microbiome and host genome during high altitude adaptation were not fully understood. Here, DNA from faecal samples was used to investigate the gut microbial compositions and diversity in three host species endemic to the high-altitude Tibetan plateau, the Tibetan antelope (Pantholops hodgsonii, T-antelope, 4300 m) and the Tibetan wild ass (Equus kiang, T-ass, 4300 m), and in the Tibetan sheep (Ovis aries, T-sheep) collected from two different altitudes (T-sheep [k], 4300 m and T-sheep [l] 3000 m). Ordinary sheep (O. aries, sheep) from low altitudes (1800 m) were used for comparison. 16S rRNA gene sequencing revealed that the genera Ruminococcus (22.78%), Oscillospira (20.00%), and Clostridium (10.00%) were common taxa in all high-altitude species (T-antelope, T-ass and T-sheep [k]). Ruminococcaceae, Clostridiales, Clostridia, and Firmicutes showed greater enrichment in the T-antelopes' gut microbiota than in the microbiota of lower-altitude sheep (T-sheep [l] and sheep). The T-antelopes' gut microbiota displayed a higher ratio of Firmicutes to Bacteroidetes than lower-altitude sheep (T-sheep [l] and sheep). A functional capacity analysis of the paired-end metagenomics sequences of the gut metagenomes of high-altitude T-antelopes and T-sheep annotated over 80% of the unique genes to metabolism (especially carbohydrate metabolism pathways) and genetic information processing in the Kyoto Encyclopedia of Genes and Genomes database. The gut metagenome of the T-antelope may have co-evolved with the host genomes (e.g. glycolysis and DNA repair). The higher-altitude herbivores tended to have similar gut microbial compositions, with similar functional capacities, suggesting that their gut microbiota could involved in their high-altitude adaptation.


Assuntos
Antílopes/microbiologia , Equidae/microbiologia , Microbioma Gastrointestinal , Ovinos/microbiologia , Aclimatação , Altitude , Animais , Antílopes/fisiologia , Equidae/fisiologia , Fezes/microbiologia , Metagenoma , Ovinos/fisiologia , Tibet
18.
Blood Cells Mol Dis ; 76: 25-31, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30683541

RESUMO

Chronic mountain sickness (CMS) has a higher incidence in the plateau region and is characterized by excessive erythrocytosis and hypoxemia. Bcl-2 family plays an important role in the process of erythropoiesis and the regulation of apoptosis. This study aimed to examine the change in apoptosis of erythroblasts in CMS patients and explore the involvement of Bcl-2 family. Bone marrow mononuclear cells (BMMNCs) were isolated by density gradient centrifugation from 18 CMS patients and 17 control participants. The apoptotic rate, mitochondrial membrane potential (MMP), the protein expression of caspase-3, TNFR, Fas, Bcl-2, Bax and Cyt-C were examined by flow cytometry, and mRNA expression was determined by real-time PCR. The results showed that apoptotic rate of erythroblasts was lower and MMP was higher in CMS group than in control group. The mRNA and protein expression levels of Bcl-2 were higher while Bax level was lower in CMS group than in control group. In CMS group, the apoptosis rate of CD71+ erythroblasts was negatively correlated with the ratio of CD71+ cells in BMMNCs and positively correlated with hemoglobin level. In conclusion, erythroblasts apoptosis is decreased due to the regulation of the expression of Bcl-2 family members in the erythroblasts of CMS patients.


Assuntos
Doença da Altitude/sangue , Apoptose , Eritroblastos/metabolismo , Policitemia/etiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antígenos CD/análise , Células da Medula Óssea/patologia , Estudos de Casos e Controles , Doença Crônica , Regulação para Baixo , Eritroblastos/patologia , Hemoglobinas/análise , Humanos , Potencial da Membrana Mitocondrial , Cultura Primária de Células , Receptores da Transferrina/análise , Proteína X Associada a bcl-2/metabolismo
19.
Biochem Biophys Res Commun ; 500(2): 117-123, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29626477

RESUMO

The plateau pika (Ochotona curzoniae), one of the indigenous animals of the Qinghai-Tibet Plateau, is adapted to life in a cold and hypoxic environment. We conducted a series of genomic, proteomic and morphological studies to investigate whether changes in energy metabolism contribute to adaptation of the plateau pika to cold stress by analyzing summer and winter cohorts. The winter group showed strong morphological and histological features of brown adipose tissue (BAT) in subcutaneous white adipose tissue (sWAT). To obtain molecular evidence of browning of sWAT, we performed reverse transcription and quantitative real-time PCR, which revealed that BAT-specific genes, including uncoupling protein 1 (UCP-1) and PPAR-γ coactivator 1α (PGC-1α), were highly expressed in sWAT from the winter group. Compared with the summer group, Western blot analysis also confirmed that UCP-1, PGC-1α and Cox4 protein levels were significantly increased in sWAT from the winter group. Increased BAT mass in the inter-scapular region of the winter group was also observed. These results suggest that the plateau pika adapts to cold by browning sWAT and increasing BAT in order to increase thermogenesis. These changes are distinct from the previously reported adaptation of highland deer mice. Understanding the regulatory mechanisms underlying this adaptation may lead to novel therapeutic strategies for treating obesity and metabolic disorders.


Assuntos
Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Exposição Ambiental , Lagomorpha/metabolismo , Gordura Subcutânea/metabolismo , Adiposidade , Animais , Peso Corporal , Regulação da Expressão Gênica , Glucose/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/genética , Estações do Ano , Tibet
20.
Biochem Biophys Res Commun ; 499(1): 44-51, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29551679

RESUMO

Ferroptosis is an iron- and oxidative-dependent form of regulated cell death and may play important roles in maintaining myocardium homeostasis and pathology of cardiovascular diseases. Currently, the regulatory roles of lipid signals in regulating cardiomyocytes ferroptosis has not been explored. In this study, we show that ENPP2, as a lipid kinase involved in lipid metabolism, protects against erastin-induced ferroptosis in cardiomyocytes. The classical ferroptosis inducer erastin remarkably inhibits the growth which could be rescued by the small molecule Fer-1 in H9c2 cells. Adenovirus mediated ENPP2 overexpression modestly promotes migration and proliferation and significantly inhibits erastin-induced ferroptosis of H9c2 cells. ENPP2 overexpression leads to increase the LPA level in supernatant of H9c2 cells. H9c2 cells express the LPAR1, LPAR3, LPAR4 and LPAR5 receptors. The supernatant of ENPP2 transduced cardiomyocytes could protects the cells from erastin-induced ferroptosis of H9c2 cells. Furthermore, we observed that ENPP2 overexpression regulates ferroptosis-associated gene GPX4, ACSL4 and NRF2 expression and modulates MAPK and AKT signal in H9c2 cells. Collectively, these findings demonstrated that ENPP2/LPA protects cardiomyocytes from erastin-induced ferroptosis through modulating GPX4, ACSL4 and NRF2 expression and enhancing AKT survival signal.


Assuntos
Apoptose/efeitos dos fármacos , Citotoxinas/toxicidade , Ferro/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Diester Fosfórico Hidrolases/genética , Piperazinas/toxicidade , Animais , Apoptose/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Diester Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA