Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Appl Opt ; 63(9): 2324-2330, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38568588

RESUMO

Optical hiding often requires the selection of specific artificial optical components as carriers, which results in poor versatility of the carriers and high costs for the hiding system. To conceal secret information on different surfaces such as metal, wood, and paper, we propose an optical information hiding method. In this method, we use images of surfaces, whose grayscale histograms have the characteristic of symmetric distribution. Based on this characteristic, we first scramble the surface image, and then adjust part of the gray value of the surface image to the complementary value to embed the secret information into a scrambled surface image to generate a key image. In the extraction process, a projector is used to reproduce the scrambled surface image and the key image, which are then incoherently superimposed to extract the secret information using the human visual system. The extraction process does not require complex optical knowledge and is simple and feasible. Simulation experiments and optical experiments indicate that this method is applicable in practice and possesses good security and imperceptibility. Furthermore, we prove the reliability of this method by embedding secret information in different surface images, demonstrating the potential application of more surface images in the field of optical information hiding. Finally, we discuss the applicability of surface information images and analyze the imperceptibility of key images.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36166060

RESUMO

The flea beetle, Altica cirsicola, escapes predators by jumping and landing in a dense maze of leaves. How do they land on such varied surfaces? In this experimental study, we filmed the take-off, flight, and landing of flea beetles on a configurable angled platform. We report three in-flight behaviors: winged, wingless, and an intermediate winged mode. These modes significantly affected take-off speed, acceleration, and the duration that wings were deployed. When wings were closed, flea beetles rolled or pitched up to five times in the air. This work may help to understand how insects can jump and right themselves onto variable surfaces.


Assuntos
Besouros , Sifonápteros , Animais , Besouros/fisiologia , Insetos/fisiologia , Asas de Animais/fisiologia , Fenômenos Biomecânicos
3.
Soft Matter ; 19(5): 841-850, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453836

RESUMO

Structural stabilization for a membrane structure under high-frequency vibration is still a recognized problem. In nature, honeybee wings with non-uniform material properties demonstrate excellent anti-interference ability. However, the correlation between the structural stabilization and mechanical properties of insect wings has not been completely verified. Here we demonstrate that the sclerotization diversity partially distinguishes the stiffness inhomogeneity of the wing structure. Furthermore, a wing cross-section model with diversity in elastic modulus is constructed to analyze the effect of stiffness distribution on stress optimization during flight. Our results demonstrate that the heterogeneous stiffness promotes the stress distribution and structural stabilization of the wing during flight, which may inspire more optimal designs for anisotropic high-strength membrane structures.


Assuntos
Voo Animal , Insetos , Abelhas , Animais , Módulo de Elasticidade , Asas de Animais , Anisotropia , Fenômenos Biomecânicos , Modelos Biológicos
4.
J Exp Biol ; 225(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35770514

RESUMO

The ladybird beetle (Coccinella septempunctata) is known for swift deployment of its elytra, an action that requires considerable power. However, actuation by thoracic muscles alone may be insufficient to deploy elytra at high speed because the maximum mechanical power that elytral muscles can produce is only 70% of that required for initiation of deployment. Nevertheless, the elytra open rapidly, within 3 ms in the initial phase, at a maximum angular velocity of 66.49±21.29 rad s-1, rivaling the strike velocity of ant lion (Myrmeleon crudelis) mandibles (65±21 rad s-1). Here, we hypothesize that elytra coupling may function as an energy storage mechanism that facilitates rapid opening by releasing elastic strain energy upon deployment. To test this hypothesis and better understand the biomechanics of elytra deployment, we combined micro-computed tomography and scanning electron microscopy to examine the microstructure of the coupling of paired elytra. We found that two rows of setae on the internal edges of the elytra coupling structure undergo elastic deformation when the elytra are locked together. Kinematics observations and mathematical modeling suggest that the elastic potential energy stored in the compressed setae generates 40% of the power required for deployment of elytra. Our findings broaden insights into how ladybirds actuate elytra opening by a strategy of using both muscles and elastic microstructures, and demonstrate a distributed pattern of actuation that adapts to geometrical constraints in elytra locking.


Assuntos
Besouros , Animais , Fenômenos Biomecânicos/fisiologia , Aves , Besouros/fisiologia , Microscopia Eletrônica de Varredura , Sensilas , Microtomografia por Raio-X
5.
Arch Insect Biochem Physiol ; 111(1): e21898, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35434835

RESUMO

The three weevil species, Sternochetus gravis, S. mangiferae, and S. olivieri, have all been reported to be serious pests of mango fruits. Morphology, biology, and various management approaches of these economically important weevils have been well studied. However, no mitochondrial genomes have been reported from the genus Sternochetus. Herein, we assembled mitogenomes of all the three Sternochetus species to reveal their mitogenomic characteristics. A DNA library of 350 bp insert size was constructed and sequenced in Illumina's HiSeq 6000 platform with a pair-end 150 bp sequencing strategy by Novogene. The sequence reads were assembled using GetOrganelle v1.7.1 and the genes were annotated by Geneious Prime 2021.0.3 and MITOS Web Server. Coupled with 61 published mitogenomes from 13 subfamilies of Curculionidae, we reconstructed phylogenetic trees to resolve evolutionary relationships of these closely related species and also examined subfamily-level classification among Curculionidae. All three mitogenomes are double-stranded circular molecules with 22 transfer RNA genes, 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 1 noncoding control region as in other insects. Higher interspecific nucleotide divergence (about 10%) of 13 PCGs indicated these three Sternochetus species diverged a long time ago. Phylogenetic analyses using both maximum likelihood and Bayesian inference methods showed that Sternochetus falls into the basal clade of Cryptorhynchini, a tribe in the subfamily Molytinae. The relationship of S. olivieri as a sister species to S. gravis + S. mangiferae was strongly supported. The monophyly of Cryptorhynchini was also well supported whereas Molytinae was suggested to be a polyphyletic group.


Assuntos
Besouros , Genoma Mitocondrial , Gorgulhos , Animais , Teorema de Bayes , Filogenia
6.
J Insect Sci ; 20(5)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098431

RESUMO

The abdominal intersegmental structures allow insects, such as honey bees, dragonflies, butterflies, and drosophilae, to complete diverse behavioral movements. In order to reveal how the complex abdominal movements of these insects are produced, we use the honey bee (Apis mellifera L.) as a typical insect to study the relationship between intersegmental structures and abdominal motions. Microstructure observational experiments are performed by using the stereoscope and the scanning electron microscope. We find that a parallel mechanism, composed of abdominal cuticle and muscles between the adjacent segments, produces the complex and diverse movements of the honey bee abdomen. These properties regulate multiple behavioral activities such as waggle dance and flight attitude adjustment. The experimental results demonstrate that it is the joint efforts of the muscles and membranes that connected the adjacent cuticles together. The honey bee abdomen can be waggled, expanded, contracted, and flexed with the actions of the muscles. From the view point of mechanics, a parallel mechanism is evolved from the intersegmental connection structures of the honey bee abdomen. Here, we conduct a kinematic analysis of the parallel mechanism to simulate the intersegmental abdominal motions.


Assuntos
Abelhas/fisiologia , Abdome , Animais , Fenômenos Biomecânicos , Movimento
7.
Zoolog Sci ; 35(3): 199-207, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29882497

RESUMO

Camouflaged objects are harder to detect if the background itself is more heterogeneous, and search becomes increasingly inefficient when the scene contains multiple items resembling the target. Some adult leaf beetles (Coleoptera: Chrysomelidae) with highly specialized habits make holes on host plant leaves while feeding. We propose that leaf beetles camouflage themselves with their feeding holes. The presence of holes makes predators' visual search harder, thus giving beetles more time to escape from the leaf surface either by jumping (Galerucinae: Alticini) or rolling (rest of Chrysomelidae). Based on behavioral observations and analysis of 25 photographs of feeding leaf beetles (15 species), we demonstrate that adult leaf beetles camouflage themselves by creating holes of uniform size, approximately half of the beetle body size. Observation of the feeding behavior and anatomy of a typical hole-feeding beetle (Altica cirsicola) showed that the foregut volume and head-prothorax mobility of beetles are the two major factors that constrain the hole size. A computer-simulated visual search test showed that the greater the number of holes, and the more each hole approached beetle body size, the longer it took humans (as models) to locate a beetle on a leaf. This study reports a newly discovered kind of camouflage, hole-feeding camouflage, in leaf beetles, which makes visual detection or recognition more difficult by changing the environmental background. This type of camouflage may open up a range of new possibilities for studies in animal cognition analysis and evolution of anti-predation defenses.


Assuntos
Comportamento Animal/fisiologia , Besouros/fisiologia , Animais , Mimetismo Biológico , Tamanho Corporal , Comportamento Alimentar , Folhas de Planta
8.
Cladistics ; 31(1): 50-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34758578

RESUMO

Mantophasmatodea was described as a new insect order in 2002. Since then, this small group of wingless insects has developed into one of the best investigated insect taxa. Nevertheless, many aspects of mantophasmatodean morphology as well as their evolutionary relationships remain ambiguous. To determine the phylogenetic relationships of Mantophasmatodea based on an extended character set and to elucidate possible morphological adaptions towards flightlessness, we investigated the thoracic morphology of two species, Austrophasma caledonensis and Mantophasma sp. The morphological similarity between these two species is striking and no differences in musculature were found. The mantophasmatodean thorax strongly resembles that of ice crawlers (Grylloblattodea), especially with respect to the presence of pleural processes in the meso- and metathorax, branched furcae in all segments, and similar muscle equipment. In a cladistic analysis containing all major lineages of Neoptera, the monophyly of Polyneoptera is supported by the presence of an anal fan and several modifications of the wing joint. Within Polyneoptera, a sister-group relationship between stoneflies and the remaining Polyneoptera is supported. A clade comprising Mantophasmatodea and the Grylloblattodea gains strong support from thoracic morphology and can be considered assured. Potential thoracic apomorphies include prothoracic paracoxal invaginations, pterothoracic pleural arms that originate from the epimeron, and a unique metathoracic sterno-coxal musculature. The monophyly of Orthoptera and Dictyoptera is further supported while the deeper polyneopteran nodes remain unresolved. Among the wingless taxa investigated we found few general morphological adaptations whereas, in other aspects, especially in the musculature, strong differences could be observed. However, much more research on the strongly neglected topic of flightlessness is required to make reliable statements.

9.
Zootaxa ; 3973(2): 300-8, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26249860

RESUMO

A new genus (Penghou) with a single new species (P. yulongshan) from Yunnan Province in China is described and illustrated. It is compared to Hespera Weise, Hesperomorpha Ogloblin, Laotzeus Chen, Luperomorpha Weise, Mandarella Duvivier, Omeiana Chen, Stenoluperus Ogloblin and Taiwanohespera Kimoto.


Assuntos
Besouros/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , China , Besouros/anatomia & histologia , Besouros/crescimento & desenvolvimento , Feminino , Masculino , Tamanho do Órgão
10.
Insects ; 15(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39057265

RESUMO

In this study, the morphology and ultrastructure of the compound eye of Asi. xanthospilota were examined by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-computed tomography (µCT), and 3D reconstruction. Spectral sensitivity was investigated by electroretinogram (ERG) tests and phototropism experiments. The compound eye of Asi. xanthospilota is of the apposition type, consisting of 611.00 ± 17.53 ommatidia in males and 634.8 0 ± 24.73 ommatidia in females. Each ommatidium is composed of a subplano-convex cornea, an acone consisting of four cone cells, eight retinular cells along with the rhabdom, two primary pigment cells, and about 23 secondary pigment cells. The open type of rhabdom in Asi. xanthospilota consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells (R1~R6) and two distally attached rhabdomeric segments generated solely by R7, while R8 do not contribute to the rhabdom. The orientation of microvilli indicates that Asi. xanthospilota is unlikely to be a polarization-sensitive species. ERG testing showed that both males and females reacted to stimuli from red, yellow, green, blue, and ultraviolet light. Both males and females exhibited strong responses to blue and green light but weak responses to red light. The phototropism experiments showed that both males and females exhibited positive phototaxis to all five lights, with blue light significantly stronger than the others.

11.
Insects ; 15(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38392541

RESUMO

The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.

12.
Insect Sci ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282236

RESUMO

Insect legs play a crucial role in various modes of locomotion, including walking, jumping, swimming, and other forms of movement. The flexibility of their leg joints is critical in enabling various modes of locomotion. The frog-legged leaf beetle Sagra femorata possesses remarkably enlarged hind legs, which are considered to be a critical adaptation that enables the species to withstand external pressures. When confronted with external threats, S. femorata initiates a stress response by rapidly rotating its hind legs backward and upward to a specific angle, thereby potentially intimidating potential assailants. Based on video analysis, we identified 4 distinct phases of the hind leg rotation process in S. femorata, which were determined by the range of rotation angles (0°-168.77°). Utilizing micro-computed tomography (micro-CT) technology, we performed a 3-dimensional (3D) reconstruction and conducted relative positioning and volumetric analysis of the metacoxa and metatrochanter of S. femorata. Our analysis revealed that the metacoxa-trochanter joint is a "screw-nut" structure connected by 4 muscles, which regulate the rotation of the legs. Further testing using a 3D-printed model of the metacoxa-trochanter joint demonstrated its possession of a self-locking mechanism capable of securing the legs in specific positions to prevent excessive rotation and dislocation. It can be envisioned that this self-locking mechanism holds potential for application in bio-inspired robotics.

13.
Sci Data ; 11(1): 799, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025902

RESUMO

Callosobruchus maculatus is one of the most competitive stored grain pests, which causes a great loss to agricultural economy. However, due to an inadequacy of high-quality reference genome, the molecular mechanisms for olfactory and hypoxic adaptations to stored environments are unknown and require to be revealed urgently, which will contribute to the detection and prevention of the invasive pests C. maculatus. Here, we presented a high-quality chromosome-level genome of C. maculatus based on Illumina, Nanopore and Hi-C sequencing data. The total size was 1.2 Gb, and 65.17% (797.47 Mb) of it was identified to be repeat sequences. Among assembled chromosomes, chromosome 10 was considered the X chromosome according to the evidence of reads coverage and homologous genes among species. The current version of high-quality genome provides preferable data resources for the adaptive evolution research of C. maculatus.


Assuntos
Besouros , Genoma de Inseto , Animais , Besouros/genética
14.
Cladistics ; 29(2): 147-165, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34814378

RESUMO

The relationships of extant and extinct lineages of Adephaga were analysed formally for the first time. Emphasis is placed on the aquatic and semiaquatic groups and their evolution in the Mesozoic. †Triadogyrus and †Mesodineutus belong to Gyrinidae, the sister group of the remaining families. †Triaplidae are the sister group of the following groups (Haliplidae, Geadephaga, Dytiscoidea incl. †Liadytidae, †Parahygrobiidae and †Coptoclavidae [major part]). The lack of a ventral procoxal joint and a very short prosternal process are plesiomorphies of †Triaplidae. †Coptoclavidae and †Timarchopsinae are paraphyletic. †Timarchopsis is placed in a geadephagan clade. In contrast to other coptoclavids, its metathorax is close to the condition found in Haliplidae, with a complete transverse ridge and coxae with large plates and free mesal walls. †Coptoclavidae s.str., i.e. excl. †Timarchopsis, is a dytiscoid subgroup. The mesal metacoxal walls are fused, the coxal plates are reduced, and the transverse ridge is absent. †Stygeonectes belongs to this dytiscoid coptoclavid unit and is therefore misplaced in †Timarchopsinae. †Liadytidae belongs to a dytiscoid subgroup, which also comprises the extant families Aspidytidae, Amphizoidae, Hygrobiidae and Dytiscidae. †Parahygrobia is the sister group of Hygrobiidae. The larvae are characterized by a broad gula, the absence of the lacinia, retractile maxillary bases and very long urogomphi set with long setae. †Liadytiscinae is the sister group of extant Dytiscidae. There is no support for a clade †Eodromeinae and for Trachypachidae incl. †Eodromeinae. †Fortiseode is nested within Carabidae. The exclusion of fossil taxa has no effect on the branching pattern. The evolution of Adephaga in the Mesozoic is discussed. Possible reasons for the extinction of †Coptoclavidae are the rise of teleost fish and the competition of Gyrinidae and Dytiscidae, which possess efficient defensive glands and larval mandibular sucking channels.

15.
Zootaxa ; 3682: 178-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25243282

RESUMO

Coraebus hastanus Gory & Laporte de Castelnau, 1839 is easily distinguished from the other species of the genus Coraebus Gory & Laporte de Castelnau, 1839. It was divided into three subspecies, but the main diagnostic characters were variable. In order to understand the morphological variability and taxonomy of subspecies of C. hastanus, shape of elytral apex, lateral margin of elytra and the aedeagi were analyzed using geometric morphometric and traditional morphometric approaches. Based on the results and distribution patterns of the three subspecies, C. hastanus oberthueri Lewis, 1896 is treated as synonym of C. hastanus Gory & Laporte de Castelnau, 1839, and C. hastanus ephippiatus Théry, 1938 is elevated to species rank, and these two species are also redescribed and illustrated.


Assuntos
Besouros/anatomia & histologia , Besouros/classificação , Distribuição Animal , Animais , Sudeste Asiático , Ásia Oriental , Feminino , Masculino , Especificidade da Espécie
16.
Zootaxa ; 3694: 461-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26312304

RESUMO

The first instar and mature larvae of Altica koreana (Ogloblin) and A. viridicyanea (Baly) are described and illustrated for the first time and compared with larvae of Altica caerulescens (Baly), A. cirsicola Ohno, and A. fragariae (Nakane). A key to the five related Altica species is also given.


Assuntos
Besouros/classificação , Larva/crescimento & desenvolvimento , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Besouros/anatomia & histologia , Besouros/crescimento & desenvolvimento , Feminino , Larva/anatomia & histologia , Larva/classificação , Masculino , Tamanho do Órgão
17.
Pest Manag Sci ; 79(9): 3002-3011, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36966484

RESUMO

BACKGROUND: The biogenic amine histamine plays a critical role in the phototransduction and photopreference of most insects. Here, we study the function of histamine in Callosobruchus maculatus, a global storage pest. RESULTS: In our experiment, we initially identified the histidine decarboxylase (hdc) gene through bioinformation analysis. We subsequently investigated effects of hdc and histamine on the photopreference of C. maculatus using a combination of RNA interference (RNAi), electroretinograms (ERG), immunostaining, and photopreference behavior approaches. Our results showed that histamine was required for visual signal transduction of C. maculatus, and increased its photopreference regardless of the wavelength. CONCLUSION: This is the first study analyzing the molecular characteristics of C. maculatus photopreference, which forms the basis for a molecular mechanism for the effects of histamine on its visual transduction and preference. In practice, better understanding the photopreference patterns contributes to IPM (integrated pest management) for this storage pest. © 2023 Society of Chemical Industry.


Assuntos
Besouros , Histamina , Animais , Histamina/análise , Controle de Pragas , Transdução de Sinal Luminoso
18.
J Insect Physiol ; 151: 104572, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821056

RESUMO

More than half of all insect species utilize various natural liquids as primary diet. The concentrated liquids with energy-dense nutrition can provide highly favorable rewards, however, their high-viscosity poses challenges to the insect for ingesting. Here we show that rhinoceros beetles, Trypoxylus dichotomus (Coleoptera: Scarabaeidae), are capable of ingesting sugar solutions with viscosities spanning four orders of magnitude, exhibiting extraordinary adaptability to diverse natural liquid sources. We discovered a previously unidentified maxillae-sweeping motion that beetles preferentially adopt to consume highly viscous liquids, achieving a higher feeding rate than the more common direct sucking. By utilizing morphological characterizations, flow visualization, and fluid-structure coupling simulation, we revealed the underlying mechanisms of how this maxillary movement facilitates the transportation of viscous liquid. Our findings not only shed light on the multi-functionality of beetle mouthparts but also provide insights into the adaptability of generalized mouthparts to a broad range of fluid sources.


Assuntos
Besouros , Animais , Viscosidade , Carboidratos
19.
Zookeys ; 1181: 111-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829555

RESUMO

Two new species of Longitarsus Latreille, 1829 from China are described: L.pekingensis Liang, Konstantinov & Ge, sp. nov. (Beijing) and L.xinjiangensis Liang, Konstantinov & Ge, sp. nov. (Xinjiang). Images of dorsal and lateral habitus, pronotum, head, and male and female genitalia are provided. The records of Longitarsusviolentus Weise, 1893 and Longitarsusweisei Guillebeau, 1895 in China are discussed. Holotypes of L.marguzoricus Konstantinov in Konstantinov & Lopatin, 2000 and L.violentoides Konstantinov in Konstantinov & Lopatin, 2000 are illustrated with images of pronotum and median lobe of aedeagus. A key to species of L.violentus species group is provided.

20.
Biology (Basel) ; 12(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508435

RESUMO

Hindwing venation is one of the most important morphological features for the functional and evolutionary analysis of beetles, as it is one of the key features used for the analysis of beetle flight performance and the design of beetle-like flapping wing micro aerial vehicles. However, manual landmark annotation for hindwing morphological analysis is a time-consuming process hindering the development of wing morphology research. In this paper, we present a novel approach for the detection of landmarks on the hindwings of leaf beetles (Coleoptera, Chrysomelidae) using a limited number of samples. The proposed method entails the transfer of a pre-existing model, trained on a large natural image dataset, to the specific domain of leaf beetle hindwings. This is achieved by using a deep high-resolution network as the backbone. The low-stage network parameters are frozen, while the high-stage parameters are re-trained to construct a leaf beetle hindwing landmark detection model. A leaf beetle hindwing landmark dataset was constructed, and the network was trained on varying numbers of randomly selected hindwing samples. The results demonstrate that the average detection normalized mean error for specific landmarks of leaf beetle hindwings (100 samples) remains below 0.02 and only reached 0.045 when using a mere three samples for training. Comparative analyses reveal that the proposed approach out-performs a prevalently used method (i.e., a deep residual network). This study showcases the practicability of employing natural images-specifically, those in ImageNet-for the purpose of pre-training leaf beetle hindwing landmark detection models in particular, providing a promising approach for insect wing venation digitization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA