Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961296

RESUMO

One-dimensional (1D) interacting electrons are often described as a Luttinger liquid1-4 having properties that are intrinsically different from those of Fermi liquids in higher dimensions5,6. In materials systems, 1D electrons exhibit exotic quantum phenomena that can be tuned by both intra- and inter-1D-chain electronic interactions, but their experimental characterization can be challenging. Here we demonstrate that layer-stacking domain walls (DWs) in van der Waals heterostructures form a broadly tunable Luttinger liquid system, including both isolated and coupled arrays. We have imaged the evolution of DW Luttinger liquids under different interaction regimes tuned by electron density using scanning tunnelling microscopy. Single DWs at low carrier density are highly susceptible to Wigner crystallization consistent with a spin-incoherent Luttinger liquid, whereas at intermediate densities dimerized Wigner crystals form because of an enhanced magneto-elastic coupling. Periodic arrays of DWs exhibit an interplay between intra- and inter-chain interactions that gives rise to new quantum phases. At low electron densities, inter-chain interactions are dominant and induce a 2D electron crystal composed of phased-locked 1D Wigner crystal in a staggered configuration. Increased electron density causes intra-chain fluctuation potentials to dominate, leading to an electronic smectic liquid crystal phase in which electrons are ordered with algebraical correlation decay along the chain direction but disordered between chains. Our work shows that layer-stacking DWs in 2D heterostructures provides opportunities to explore Luttinger liquid physics.

2.
Nano Lett ; 22(10): 4124-4130, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35533399

RESUMO

We demonstrate ultrasharp (≲10 nm) lateral p-n junctions in graphene using electronic transport, scanning tunneling microscopy, and first-principles calculations. The p-n junction lies at the boundary between differentially doped regions of a graphene sheet, where one side is intrinsic and the other is charge-doped by proximity to a flake of α-RuCl3 across a thin insulating barrier. We extract the p-n junction contribution to the device resistance to place bounds on the junction width. We achieve an ultrasharp junction when the boundary between the intrinsic and doped regions is defined by a cleaved crystalline edge of α-RuCl3 located 2 nm from the graphene. Scanning tunneling spectroscopy in heterostructures of graphene, hexagonal boron nitride, and α-RuCl3 shows potential variations on a sub 10 nm length scale. First-principles calculations reveal that the charge-doping of graphene decays sharply over just nanometers from the edge of the α-RuCl3 flake.

3.
Nano Lett ; 21(17): 7100-7108, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415771

RESUMO

Graphite crystals used to prepare graphene-based heterostructures are generally assumed to be defect free. We report here scanning tunneling microscopy results that show graphite commonly used to prepare graphene devices can contain a significant amount of native defects. Extensive scanning of the surface allows us to determine the concentration of native defects to be 6.6 × 108 cm-2. We further study the effects of these native defects on the electronic properties of Bernal-stacked bilayer graphene. We observe gate-dependent intravalley scattering and successfully compare our experimental results to T-matrix-based calculations, revealing a clear carrier density dependence in the distribution of the scattering vectors. We also present a technique for evaluating the spatial distribution of short-scale scattering. Finally, we present a theoretical analysis based on the Boltzmann transport equation that predicts that the dilute native defects identified in our study are an important extrinsic source of scattering, ultimately setting the charge carrier mobility at low temperatures.


Assuntos
Grafite , Eletrônica , Microscopia de Tunelamento
4.
Nano Lett ; 21(21): 8993-8998, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699239

RESUMO

Experimental realizations of graphene-based stadium-shaped quantum dots (QDs) have been few and have been incompatible with scanned probe microscopy. Yet, the direct visualization of electronic states within these QDs is crucial for determining the existence of quantum chaos in these systems. We report the fabrication and characterization of electrostatically defined stadium-shaped QDs in heterostructure devices composed of monolayer graphene (MLG) and bilayer graphene (BLG). To realize a stadium-shaped QD, we utilized the tip of a scanning tunneling microscope to charge defects in a supporting hexagonal boron nitride flake. The stadium states visualized are consistent with tight-binding-based simulations but lack clear quantum chaos signatures. The absence of quantum chaos features in MLG-based stadium QDs is attributed to the leaky nature of the confinement potential due to Klein tunneling. In contrast, for BLG-based stadium QDs (which have stronger confinement) quantum chaos is precluded by the smooth confinement potential which reduces interference and mixing between states.


Assuntos
Grafite , Pontos Quânticos , Diagnóstico por Imagem , Eletrônica , Grafite/química , Pontos Quânticos/química
5.
Phys Rev Lett ; 127(13): 136402, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623864

RESUMO

Bloch states of electrons in honeycomb two-dimensional crystals with multivalley band structure and broken inversion symmetry have orbital magnetic moments of a topological nature. In crystals with two degenerate valleys, a perpendicular magnetic field lifts the valley degeneracy via a Zeeman effect due to these magnetic moments, leading to magnetoelectric effects which can be leveraged for creating valleytronic devices. In this work, we demonstrate that trilayer graphene with Bernal stacking (ABA TLG), hosts topological magnetic moments with a large and widely tunable valley g factor (g_{ν}), reaching a value g_{ν}∼1050 at the extreme of the studied parametric range. The reported experiment consists in sublattice-resolved scanning tunneling spectroscopy under perpendicular electric and magnetic fields that control the TLG bands. The tunneling spectra agree very well with the results of theoretical modeling that includes the full details of the TLG tight-binding model and accounts for a quantum-dot-like potential profile formed electrostatically under the scanning tunneling microscope tip.

6.
Phys Rev Lett ; 127(10): 106401, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533366

RESUMO

The properties of semiconductors can be crucially impacted by midgap states induced by dopants, which can be native or intentionally incorporated in the crystal lattice. For Bernal-stacked bilayer graphene (BLG), which has a tunable band gap, the existence of midgap states induced by dopants or adatoms has been investigated theoretically and observed indirectly in electron transport experiments. Here, we characterize BLG midgap states in real space, with atomic-scale resolution with scanning tunneling microscopy and spectroscopy. We show that the midgap states in BLG-for which we demonstrate gate tunability-appear when the dopant is hosted on the nondimer sublattice sites. We further evidence the presence of narrow resonances at the onset of the high-energy bands (valence or conduction, depending on the dopant type) when the dopants lie on the dimer sublattice sites. Our results are supported by tight-binding calculations that agree remarkably well with the experimental findings.

7.
Nano Lett ; 20(12): 8682-8688, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226819

RESUMO

Electrostatically defined quantum dots (QDs) in Bernal stacked bilayer graphene (BLG) are a promising quantum information platform because of their long spin decoherence times, high sample quality, and tunability. Importantly, the shape of QD states determines the electron energy spectrum, the interactions between electrons, and the coupling of electrons to their environment, all of which are relevant for quantum information processing. Despite its importance, the shape of BLG QD states remains experimentally unexamined. Here we report direct visualization of BLG QD states by using a scanning tunneling microscope. Strikingly, we find these states exhibit a robust broken rotational symmetry. By using a numerical tight-binding model, we determine that the observed broken rotational symmetry can be attributed to low energy anisotropic bands. We then compare confined holes and electrons and demonstrate the influence of BLG's nontrivial band topology. Our study distinguishes BLG QDs from prior QD platforms with trivial band topology.

8.
Nano Lett ; 19(4): 2682-2687, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888827

RESUMO

Electrostatic gating is pervasive in materials science, yet its effects on the electronic band structure of materials has never been revealed directly by angle-resolved photoemission spectroscopy (ARPES), the technique of choice to noninvasively probe the electronic band structure of a material. By means of a state-of-the-art ARPES setup with submicron spatial resolution, we have investigated a heterostructure composed of Bernal-stacked bilayer graphene (BLG) on hexagonal boron nitride and deposited on a graphite flake. By voltage biasing the latter, the electric field effect is directly visualized on the valence band as well as on the carbon 1s core level of BLG. The band gap opening of BLG submitted to a transverse electric field is discussed and the importance of intra layer screening is put forward. Our results pave the way for new studies that will use momentum-resolved electronic structure information to gain insight on the physics of materials submitted to the electric field effect.

9.
Nat Nanotechnol ; 18(3): 250-256, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879123

RESUMO

Materials such as graphene and topological insulators host massless Dirac fermions that enable the study of relativistic quantum phenomena. Single quantum dots and coupled quantum dots formed with massless Dirac fermions can be viewed as artificial relativistic atoms and molecules, respectively. Such structures offer a unique testbed to study atomic and molecular physics in the ultrarelativistic regime (particle speed close to the speed of light). Here we use a scanning tunnelling microscope to create and probe single and coupled electrostatically defined graphene quantum dots to unravel the magnetic-field responses of artificial relativistic nanostructures. We observe a giant orbital Zeeman splitting and orbital magnetic moment up to ~70 meV T-1 and ~600µB (µB, Bohr magneton) in single graphene quantum dots. For coupled graphene quantum dots, Aharonov-Bohm oscillations and a strong Van Vleck paramagnetic shift of ~20 meV T-2 are observed. Our findings provide fundamental insights into relativistic quantum dot states, which can be potentially leveraged for use in quantum information science.

10.
Nanomaterials (Basel) ; 10(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545525

RESUMO

Recent experimental advancements have enabled the creation of tunable localized electrostatic potentials in graphene/hexagonal boron nitride (hBN) heterostructures without concealing the graphene surface. These potentials corral graphene electrons yielding systems akin to electrostatically defined quantum dots (QDs). The spectroscopic characterization of these exposed QDs with the scanning tunneling microscope (STM) revealed intriguing resonances that are consistent with a tunneling probability of 100% across the QD walls. This effect, known as Klein tunneling, is emblematic of relativistic particles, underscoring the uniqueness of these graphene QDs. Despite the advancements with electrostatically defined graphene QDs, a complete understanding of their spectroscopic features still remains elusive. In this study, we address this lapse in knowledge by comprehensively considering the electrostatic environment of exposed graphene QDs. We then implement these considerations into tight binding calculations to enable simulations of the graphene QD local density of states. We find that the inclusion of the STM tip's electrostatics in conjunction with that of the underlying hBN charges reproduces all of the experimentally resolved spectroscopic features. Our work provides an effective approach for modeling the electrostatics of exposed graphene QDs. The methods discussed here can be applied to other electrostatically defined QD systems that are also exposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA