Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542162

RESUMO

Recent evidence indicates that the SARS-CoV-2 spike protein affects mitochondria with a cell type-dependent outcome. We elucidate the effect of the SARS-CoV-2 receptor binding domain (RBD) on the mitochondrial network and cristae morphology, oxygen consumption, mitoROS production, and inflammatory cytokine expression in cultured human lung microvascular (HLMVECs), coronary artery endothelial (HCAECs), and bronchial epithelial cells (HBECs). Live Mito Orange staining, STED microscopy, and Fiji MiNa analysis were used for mitochondrial cristae and network morphometry; an Agilent XFp analyser for mitochondrial/glycolytic activity; MitoSOX fluorescence for mitochondrial ROS; and qRT-PCR plus Luminex for cytokines. HLMVEC exposure to SARS-CoV-2 RBD resulted in the fragmentation of the mitochondrial network, mitochondrial swelling, increased cristae area, reduced cristae density, and suppressed mitochondrial oxygen consumption and glycolysis. No significant mitochondrial morphology or oxygen consumption changes were observed in HCAECs and HBECs. SARS-CoV-2 RBD induced mitoROS-mediated expression of cytokines GM-CSF and IL-1ß in all three investigated cell types, along with IL-8 expression in both endothelial cell types. The findings suggest mitochondrial ROS control SARS-CoV-2 RBD-induced inflammation in HLMVECs, HCAECs, and HBECs, with the mitochondria of HLMVECs being more sensitive to SARS-CoV-2 RBD.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Vasos Coronários , Espécies Reativas de Oxigênio , SARS-CoV-2 , Células Epiteliais , Citocinas , Estresse Oxidativo
2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068877

RESUMO

Cardio complications such as arrhythmias and myocardial damage are common in COVID-19 patients. SARS-CoV-2 interacts with the cardiovascular system primarily via the ACE2 receptor. Cardiomyocyte damage in SARS-CoV-2 infection may stem from inflammation, hypoxia-reoxygenation injury, and direct toxicity; however, the precise mechanisms are unclear. In this study, we simulated hypoxia-reoxygenation conditions commonly seen in SARS-CoV-2-infected patients and studied the impact of the SARS-CoV-2 spike protein RBD-epitope on primary rat cardiomyocytes to gain insight into the potential mechanisms underlying COVID-19-related cardiac complications. Cell metabolic activity was evaluated with PrestoBlueTM. Gene expression of proinflammatory markers was measured by qRT-PCR and their secretion was quantified by Luminex assay. Cardiomyocyte contractility was analysed using the Myocyter plugin of ImageJ. Mitochondrial respiration was determined through Seahorse Mito Stress Test. In hypoxia-reoxygenation conditions, treatment of the SARS-CoV-2 spike RBD-epitope reduced the metabolic activity of primary cardiomyocytes, upregulated Il1ß and Cxcl1 expression, and elevated GM-CSF and CCL2 cytokines secretion. Contraction time increased, while amplitude and beating frequency decreased. Acute treatment with a virus RBD-epitope inhibited mitochondrial respiration and lowered ATP production. Under ischaemia-reperfusion, the SARS-CoV-2 RBD-epitope induces cardiomyocyte injury linked to impaired mitochondrial activity.


Assuntos
COVID-19 , Humanos , Ratos , Animais , COVID-19/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Epitopos/metabolismo , Miócitos Cardíacos/metabolismo , Hipóxia/metabolismo , Desempenho Físico Funcional
3.
Biomarkers ; 25(1): 40-47, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31694408

RESUMO

Purpose: To find an association of relative expression of hsa-miR-24-3p and hsa-miR-34a-5p molecules and CYP4F2 enzyme activity in blood plasma of stable angina pectoris (AP) patients'.Materials and Methods: MiRNA gene expression analysis was performed on total RNA extracted from blood plasma, using quantitative real-time polymerase chain reaction. CYP4F2 enzyme levels were determined using commercial ELISA kit. In total, 32 AP and 15 control samples were examined.Results: The relative expression of hsa-miR-24-3p and hsa-miR-34a-5p was upregulated by 4.4 (p = 0.0001) and 3.8 (p = 0.005) -fold in AP patient's blood plasma compared to control subjects. CYP4F2 enzyme level in blood plasma were 2.1 (p = 0.001) times lower in AP patients. Circulating hsa-miR-24-3p was negatively associated with CYP4F2 enzyme level (Spearman correlation coefficient rank r= -0.32; p = 0.03). Moreover, patients that were taking atorvastatin, had 1.5 (p = 0.04) times higher hsa-miR-24-3p expression in blood plasma.Conclusions. Our data suggest that hsa-miR-24-3p might have an effect on CYP4F2 activity during atherosclerosis.


Assuntos
Angina Estável/sangue , MicroRNA Circulante/sangue , Família 4 do Citocromo P450/sangue , MicroRNAs/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Angina Estável/tratamento farmacológico , Angina Estável/enzimologia , Angina Estável/genética , Biomarcadores/sangue , Estudos de Casos e Controles , MicroRNA Circulante/genética , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Projetos Piloto , Regulação para Cima
4.
Pharmaceutics ; 16(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38543303

RESUMO

The study presents data on the anti-inflammatory effects of a combination of sodium dichloroacetate and sodium valproate (DCA-VPA) on the expression of inflammation- and immune response-related genes in T lymphocytes of SARS-CoV-2 patients. The study aimed to assess the effects of DCA-VPA on the genes of cytokine activity, chemokine-mediated signaling, neutrophil chemotaxis, lymphocyte chemotaxis, T-cell chemotaxis, and regulation of T-cell proliferation pathways. The study included 21 patients with SARS-CoV-2 infection and pneumonia: 9 male patients with a mean age of 68.44 ± 15.32 years and 12 female patients with a mean age of 65.42 ± 15.74 years. They were hospitalized between December 2022 and March 2023. At the time of testing, over 90% of sequences analyzed in Lithuania were found to be of the omicron variant of SARS-CoV-2. The T lymphocytes from patients were treated with 5 mmol DCA and 2 mmol VPA for 24 h in vitro. The effect of the DCA-VPA treatment on gene expression in T lymphocytes was analyzed via gene sequencing. The study shows that DCA-VPA has significant anti-inflammatory effects and apparent sex-related differences. The effect is more potent in T cells from male patients with SARS-CoV-2 infection and pneumonia than in females.

5.
Cells ; 12(9)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174646

RESUMO

Extracellular vesicles (EVs) are attractive anticancer drug delivery candidates as they confer several fundamental properties, such as low immunogenicity and the ability to cross biological barriers. Mesenchymal stem cells (MSCs) are convenient producers for high EV yields, and patient-derived adipose tissue MSC-EVs could serve as personalised carriers. However, MSC-EV applications raise critical concerns as their natural cargo can affect tumour progression in both inducing and suppressing ways. In this study, we investigated the effect of adipose tissue-derived mesenchymal stem cell EVs (ASC-EVs) on several glioblastoma (GBM) cell lines to define their applicability for anticancer therapies. ASC-EVs were isolated from a cell-conditioned medium and characterised by size and specific markers. The internalisation of fluorescently labelled ASC-EVs by human GBM cells HROG36, U87 MG, and T98G was evaluated by fluorescent microscopy. Changes in GBM cell proliferation after ASC-EV application were determined by the metabolic PrestoBlue assay. Expression alterations in genes responsible for cell adhesion, proliferation, migration, and angiogenesis were evaluated by quantitative real-time PCR. ASC-EV effects on tumour invasiveness and neoangiogenesis in ovo were analysed on the chicken embryo chorioallantoic membrane model (CAM). ASC-EV treatment reduced GBM proliferation in vitro and significantly downregulated invasiveness-related genes ITGα5 (in T98G and HROG63) and ITGß3 (in HROG36) and the vascularisation-inducing gene KDR (in all GBM lines). Additionally, an approximate 65% reduction in the GBM invasion rate was observed in CAM after ASC-EV treatment. Our study indicates that ASC-EVs possess antitumour properties, reducing GBM cell proliferation and invasiveness, and can be applied as anticancer therapeutics and medicine carriers.


Assuntos
Vesículas Extracelulares , Glioblastoma , Embrião de Galinha , Animais , Humanos , Glioblastoma/metabolismo , Células-Tronco/metabolismo , Tecido Adiposo/metabolismo , Proliferação de Células , Vesículas Extracelulares/metabolismo
6.
J Pers Med ; 13(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37763073

RESUMO

We conducted a research study to create the groundwork for personalized solutions within a skin aging segment. This test utilizes genetic and general laboratory data to predict individual susceptibility to weak skin characteristics, leveraging the research on genetic polymorphisms related to skin functional properties. A cross-sectional study was conducted in a collaboration between the Private Clinic Medicina Practica Laboratory (Vilnius, Lithuania) and the Public Institution Lithuanian University of Health Sciences (Kaunas, Lithuania). A total of 370 participants agreed to participate in the project. The median age of the respondents was 40, with a range of 19 to 74 years. After the literature search, we selected 15 polymorphisms of the genes related to skin aging, which were subsequently categorized in terms of different skin functions: SOD2 (rs4880), GPX1 (rs1050450), NQO1 (rs1800566), CAT (rs1001179), TYR (rs1126809), SLC45A2 (rs26722), SLC45A2 (rs16891982), MMP1 (rs1799750), ELN (rs7787362), COL1A1 (rs1800012), AHR (rs2066853), IL6 (rs1800795), IL1Beta (rs1143634), TNF-α (rs1800629), and AQP3 (rs17553719). RT genotyping, blood count, and immunochemistry results were analyzed using statistical methods. The obtained results show significant associations between genotyping models and routine blood screens. These findings demonstrate the personalized medicine approach for the aging segment and further add to the growing literature. Further investigation is warranted to fully understand the complex interplay between genetic factors, environmental influences, and skin aging.

7.
Pharmaceutics ; 15(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140056

RESUMO

The research presents data from a preclinical study on the anti-inflammatory effects of a sodium dichloroacetate and sodium valproate combination (DCA-VPA). The 2-week treatment with a DCA 100 mg/kg/day and VPA 150 mg/kg/day combination solution in drinking water's effects on the thymus weight, its cortex/medulla ratio, Hassall's corpuscles (HCs) number in the thymus medulla, and the expression of inflammatory and immune-response-related genes in thymocytes of male Balb/c mice were studied. Two groups of mice aged 6-7 weeks were investigated: a control (n = 12) and a DCA-VPA-treated group (n = 12). The treatment did not affect the body weight gain (p > 0.05), the thymus weight (p > 0.05), the cortical/medulla ratio (p > 0.05), or the number of HCs (p > 0.05). Treatment significantly increased the Slc5a8 gene expression by 2.1-fold (p < 0.05). Gene sequence analysis revealed a significant effect on the expression of inflammation-related genes in thymocytes by significantly altering the expression of several genes related to the cytokine activity pathway, the inflammatory response pathway, and the Il17 signaling pathway in thymocytes. Data suggest that DCA-VPA exerts an anti-inflammatory effect by inhibiting the inflammatory mechanisms in the mouse thymocytes.

8.
Microorganisms ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744748

RESUMO

SARS-CoV-2 has spread vastly throughout the word. In this study, we focus on the patterns of spread in Lithuania. By analysing the genetically sequenced data of different lineages and their first appearances, we were able to compare the dynamics of spreading of the lineages and recognize the main possible cause. The impact of emigration patterns and international travel on the variety of lineages was also assessed. Results showed different patterns of spread, and while a vast variety of different lineages were brought in by international travel, many of the viral outbreaks were caused by local lineages. It can be concluded that international travel had the most impact on the spread of SARS-CoV-2.

9.
Microorganisms ; 10(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35889075

RESUMO

Here, we report the emergence of the variant lineage B.1.1.523 that contains a set of mutations including 156_158del, E484K and S494P in the spike protein. E484K and S494P are known to significantly reduce SARS-CoV-2 neutralization by convalescent and vaccinated sera and are considered as mutations of concern. Lineage B.1.1.523 presumably originated in the Russian Federation and spread across European countries with the peak of transmission in April-May 2021. The B.1.1.523 lineage has now been reported from 31 countries. In this article, we analyze the possible origin of this mutation subset and its immune response using in silico methods.

10.
Biology (Basel) ; 11(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36290387

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive CNS tumour with no efficient treatment, partly due to the retention of anticancer drugs by the blood-brain barrier (BBB) and their insufficient concentration in tumour cells. Extracellular vesicles (EVs) are attractive drug carriers because of their biocompatibility and ability to cross the BBB. Additional efficiency can be achieved by adding GBM-cell-specific ligands. GBM cells overexpress integrins; thus, one of the most straightforward targeting strategies is to modify EVs with integrin-recognising molecules. This study investigated the therapeutic potential of genetically engineered EVs with elevated membrane levels of the integrin-binding peptide RGD (RGD-EVs) against GBM cells in vitro. For RGD-EV production, stable RGD-HEK 293FT cells were generated by using a pcDNA4/TO-Lamp2b-iRGD-HA expression vector and performing antibiotic-based selection. RGD-EVs were isolated from RGD-HEK 293FT-cell-conditioned medium and characterised by size (Zetasizer), specific markers (ELISA) and RGD expression (Western Blot). Internalisation by human GBM cells HROG36 and U87 MG and BJ-5ta human fibroblasts was assessed by fluorescent EV RNA labelling. The effect of doxorubicin-loaded RGD-EVs on GBM cells was evaluated by the metabolic PrestoBlue viability assay; functional GAPDH gene knockdown by RGD-EV-encapsulated siRNA was determined by RT-qPCR. RGD-EVs had 40% higher accumulation in GBM cells (but not in fibroblasts) and induced significantly stronger toxicity by loaded doxorubicin and GAPDH silencing by loaded siRNA compared to unmodified EVs. Thus, RGD modification substantially increases the specific delivery capacity of HEK 293FT-derived EVs to GBM cells.

11.
Dis Markers ; 2022: 3004338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178127

RESUMO

BACKGROUND: Evidence shows that microRNAs (miRNAs) could play a key role in the homeostasis and development of major depressive disorder and bipolar disorder. The present study is aimed at investigating the changes in circulating miRNA expression profiles in a plasma of patients suffering from major depressive disorder (MDD) and bipolar disorder (BD) to distinguish and evaluate these molecules as biomarkers for mood disorders. METHODS: A study enrolled a total of 184 subjects: 74 controls, 84 MDD patients, and 26 BD patients. Small RNA sequencing revealed 11 deregulated circulating miRNAs in MDD and BD plasma, of which expression of 5, hsa-miR-139-3p, miRNAs hsa-let-7e-5p, hsa-let-7f-5p, hsa-miR-125a-5p, and hsa-miR-483-5p, were further verified using qPCR. miRNA gene expression data was evaluated alongside the data from clinical assessment questionnaires. RESULTS: hsa-let-7e-5p and hsa-miR-125a-5p were both confirmed upregulated: 0.75-fold and 0.25-fold, respectively, in the MDD group as well as 1.36-fold and 0.68-fold in the BD group. Receiver operating curve (ROC) analysis showed mediocre diagnostic sensitivity and specificity of both hsa-let-7e-5p and hsa-miR-125a-5p with approximate area under the curve (AOC) of 0.66. ROC analysis of combined miRNA and clinical assessment data showed that hsa-let-7e-5p and hsa-miR-125a-5p testing could improve MDD and BD diagnostic accuracy by approximately 10%. CONCLUSIONS: Circulating hsa-let-7e-5 and hsa-miR-125a-5p could serve as additional peripheral biomarkers for mood disorders; however, suicidal ideation remains the major diagnostic factor for MDD and BD.


Assuntos
Transtorno Bipolar/sangue , Transtorno Depressivo Maior/sangue , MicroRNAs/sangue , Adulto , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Biomedicines ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625699

RESUMO

Sex differences identified in the COVID-19 pandemic are necessary to study. It is essential to investigate the efficacy of the drugs in clinical trials for the treatment of COVID-19, and to analyse the sex-related beneficial and adverse effects. The histone deacetylase inhibitor valproic acid (VPA) is a potential drug that could be adapted to prevent the progression and complications of SARS-CoV-2 infection. VPA has a history of research in the treatment of various viral infections. This article reviews the preclinical data, showing that the pharmacological impact of VPA may apply to COVID-19 pathogenetic mechanisms. VPA inhibits SARS-CoV-2 virus entry, suppresses the pro-inflammatory immune cell and cytokine response to infection, and reduces inflammatory tissue and organ damage by mechanisms that may appear to be sex-related. The antithrombotic, antiplatelet, anti-inflammatory, immunomodulatory, glucose- and testosterone-lowering in blood serum effects of VPA suggest that the drug could be promising for therapy of COVID-19. Sex-related differences in the efficacy of VPA treatment may be significant in developing a personalised treatment strategy for COVID-19.

13.
Biology (Basel) ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34943274

RESUMO

Viral infections induce extracellular vesicles (EVs) containing viral material and inflammatory factors. Exosomes can easily cross the blood-brain barrier during respiratory tract infection and transmit the inflammatory signal to the brain; however, such a hypothesis has no experimental evidence. The study investigated whether exosome-like vesicles (ELVs) from virus mimetic poly (I:C)-primed airway cells enter the brain and interact with brain immune cells microglia. Airway cells were isolated from Wistar rats and BALB/c mice; microglial cell cultures-from Wistar rats. ELVs from poly (I:C)-stimulated airway cell culture medium were isolated by precipitation, visualised by transmission electron microscopy, and evaluated by nanoparticle analyser; exosomal markers CD81 and CD9 were determined by ELISA. For in vitro and in vivo tracking, particles were loaded with Alexa Fluor 555-labelled RNA. Intracellular reactive oxygen species (ROS) were evaluated by DCFDA fluorescence and mitochondrial superoxide-by MitoSOX. ELVs from poly (I:C)-primed airway cells entered the brain within an hour after intranasal introduction, were internalised by microglia and induced intracellular and intramitochondrial ROS production. There was no ROS increase in microglial cells was after treatment with ELVs from airway cells untreated with poly (I:C). In addition, poly (I:C)-primed airway cells induced inflammatory cytokine expression in the brain. The data indicate that ELVs secreted by virus-primed airway cells might enter the brain, cause the activation of microglial cells and neuroinflammation.

14.
Nat Commun ; 12(1): 5769, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599175

RESUMO

Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers.


Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/genética , África Central/epidemiologia , Anticorpos Neutralizantes/imunologia , COVID-19/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Evasão da Resposta Imune/genética , Mutação , Filogenia , Filogeografia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Viagem/estatística & dados numéricos
15.
Dis Markers ; 2020: 8521899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655720

RESUMO

MATERIALS AND METHODS: Relative expression of lncRNAs CARMN, LUCAT1, SMILR, and MALAT1 was tested in clinical aortic tissue and blood plasma samples from TAA and non-TAA patients using the qRT-PCR method. The Mann-Whitney U test was used to compare ΔCt values between the study groups. ROC curve analysis was performed to evaluate the diagnostic value of plasma lncRNAs. RESULTS: We found significantly reduced CARMN (p = 0.033) and LUCAT1 (p = 0.009) expression in aortic tissue samples from TAA patients. Relative expression of MALAT1 (p = 0.117) and SMILR (p = 0.610) did not differ in aortic tissue between the TAA and non-TAA groups. Expression of both LUCAT1 and SMILR was significantly decreased in TAA patients' blood plasma compared to controls (p = 0.018 and p = 0.032, respectively). However, only LUCAT1 showed the ability to discriminate aneurysmal disease in patients' blood plasma (AUC = 0.654, 95%CI = 0.534-0.775, p = 0.018). CONCLUSIONS: We have shown that the expression of lncRNAs CARMN and LUCAT1 is reduced in dilated aortic tissue and that the LUCAT1 and SMILR expression is lower in the blood plasma of TAA patients. Decreased LUCAT1 expression in TAA patients' blood plasma may have diagnostic potential in discriminating patients with TAA.


Assuntos
Aneurisma da Aorta Torácica/genética , Marcadores Genéticos , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneurisma da Aorta Torácica/sangue , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/sangue , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA