RESUMO
Zinc has been known to be essential for cell division for over 40 years but the molecular pathways involved remain elusive. Cellular zinc import across biological membranes necessitates the help of zinc transporters such as the SLC39A family of ZIP transporters. We have discovered a molecular process that explains why zinc is required for cell division, involving two highly regulated zinc transporters, as a heteromer of ZIP6 and ZIP10, providing the means of cellular zinc entry at a specific time of the cell cycle that initiates a pathway resulting in the onset of mitosis. Crucially, when the zinc influx across this heteromer is blocked by ZIP6 or ZIP10 specific antibodies, there is no evidence of mitosis, confirming the requirement for zinc influx as a trigger of mitosis. The zinc that influxes into cells to trigger mitosis additionally changes the phosphorylation state of STAT3 converting it from a transcription factor to a protein that complexes with this heteromer and pS38Stathmin, the form allowing microtubule rearrangement as required in mitosis. This discovery now explains the specific cellular role of ZIP6 and ZIP10 and how they have special importance in the mitosis process compared to other ZIP transporter family members. This finding offers new therapeutic opportunities for inhibition of cell division in the many proliferative diseases that exist, such as cancer.
Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/genética , Mitose/genética , Fator de Transcrição STAT3/genética , Regulação da Expressão Gênica , Humanos , Células MCF-7 , Fosforilação/genética , Multimerização Proteica/genética , Transdução de Sinais/genética , Zinco/química , Zinco/metabolismoRESUMO
BACKGROUND: MicroRNAs are potent post-transcriptional regulators involved in all hallmarks of cancer. Mir-196a is transcribed from two loci and has been implicated in a wide range of developmental and pathogenic processes, with targets including Hox, Fox, Cdk inhibitors and annexins. Genetic variants and altered expression of MIR196A are associated with risk and progression of multiple cancers including breast cancer, however little is known about the regulation of the genes encoding this miRNA, nor the impact of variants therein. METHODS: Genomic data and chromatin interaction analysis were used to discover functional promoter and enhancer elements for MIR196A. Expression data were used to associate MIR196A with mechanisms of resistance, breast cancer subtypes and prognosis. RESULTS: Here we demonstrate that MIR196A displays complex and dynamic expression patterns, in part controlled by long-range transcriptional regulation between promoter and enhancer elements bound by ERα. Expression of this miRNA is significantly increased in drug-resistant models of hormone-receptor positive disease. The expression of MIR196A also proves to be a robust prognostic factor for patients with advanced and post-menopausal ER+ disease. CONCLUSION: This work sheds light on the normal and abnormal regulation of MIR196A and provides a novel stratification method for therapeutically resistant breast cancer.
Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , MicroRNAs/genética , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Células MCF-7 , MicroRNAs/biossíntese , Prognóstico , Tamoxifeno/farmacologiaRESUMO
After the publication of this work [1], an error was noticed in Fig. 2b and Fig. 4b as well as Fig. 4b. and Fig. 5d. Images of the ERK1/2 blots were accidentally duplicated. In Fig. 5a. and Fig. 5c., the last lane for p-ERK1/2 was mistakenly cropped out of the final image. The original blot for Fig. 4b., "total EGFR" (or lane 2) is shown below to avoid any misunderstanding of the data. We apologize for this error, which did not affect any of the interpretations or conclusions of the article.
RESUMO
Predicting response to endocrine therapy and survival in oestrogen receptor positive breast cancer is a significant clinical challenge and novel prognostic biomarkers are needed. Long-range regulators of gene expression are emerging as promising biomarkers and therapeutic targets for human diseases, so we have explored the potential of distal enhancer elements of non-coding RNAs in the prognostication of breast cancer survival. HOTAIR is a long non-coding RNA that is overexpressed, promotes metastasis and is predictive of decreased survival. Here, we describe a long-range transcriptional enhancer of the HOTAIR gene that binds several hormone receptors and associated transcription factors, interacts with the HOTAIR promoter and augments transcription. This enhancer is dependent on Forkhead-Box transcription factors and functionally interacts with a novel alternate HOTAIR promoter. HOTAIR expression is negatively regulated by oestrogen, positively regulated by FOXA1 and FOXM1, and is inversely correlated with oestrogen receptor and directly correlated with FOXM1 in breast tumours. The combination of HOTAIR and FOXM1 enables greater discrimination of endocrine therapy responders and non-responders in patients with oestrogen receptor positive breast cancer. Consistent with this, HOTAIR expression is increased in cell-line models of endocrine resistance. Analysis of breast cancer gene expression data indicates that HOTAIR is co-expressed with FOXA1 and FOXM1 in HER2-enriched tumours, and these factors enhance the prognostic power of HOTAIR in aggressive HER2+ breast tumours. Our study elucidates the transcriptional regulation of HOTAIR, identifies HOTAIR and its regulators as novel biomarkers of patient response to endocrine therapy and corroborates the importance of transcriptional enhancers in cancer.
Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Transcrição Gênica , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Proteína Forkhead Box M1/biossíntese , Proteína Forkhead Box M1/genética , Fator 3-alfa Nuclear de Hepatócito/biossíntese , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Células MCF-7 , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genéticaRESUMO
During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/secundário , Pulmão/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Neoplasias da Mama/virologia , Permeabilidade Capilar , Proliferação de Células , Proteínas de Ligação a DNA , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemorragia/etiologia , Hemorragia/prevenção & controle , Humanos , Leucócitos/imunologia , Leucócitos/patologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Depleção Linfocítica , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/patologia , Proteínas de Neoplasias/genética , Neovascularização Patológica/etiologia , Neovascularização Patológica/prevenção & controle , Infiltração de Neutrófilos , Polyomavirus/patogenicidade , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sobrevida , Fatores de Transcrição , Carga TumoralRESUMO
We report the first study of the biological effect of fulvestrant on ER positive clinical breast cancer using sequential biopsies through to progression. Thirty-two locally/systemically advanced breast cancers treated with first-line fulvestrant (250 mg/month) were biopsied at therapy initiation, 6 weeks, 6 months and progression and immunohistochemically-analyzed for Ki67, ER, EGFR and HER2 expression/signaling activity. This series showed good fulvestrant responses (duration of response [DoR] = 25.8 months; clinical benefit = 81%). Ki67 fell (p < 0.001) in 79% of tumours by 6 months and lower Ki67 at all preprogression time-points predicted for longer DoR. ER and PR significantly decreased in all tumours by 6 months (p < 0.001), with some declines in ER (serine 118) phosphorylation and Bcl-2 (p = 0.007). There were modest HER2 increases (p = 0.034, 29% tumours) and loss of any detectable EGFR phosphorylation (p = 0.024, 50% tumours) and MAP kinase (ERK1/2) phosphorylation (p = 0.019, 65% tumours) by 6 months. While ER remained low, there was some recovery of Ki67, Bcl-2 and (weakly) EGFR/MAPK activity in 45-67% patients at progression. Fulvestrant's anti-proliferative impact is related to DoR, but while commonly downregulating ER and indicators of its signaling and depleting EGFR/MAPK signaling in some patients, additional elements must determine response duration. Residual ER at fulvestrant relapse explains reported sensitivity to further endocrine therapies. Occasional modest treatment-induced HER2 and weakly detectable EGFR/HER2/MAPK signaling at relapse suggests targeting of such activity might have value alongside fulvestrant in some patients. However, unknown pathways must drive relapse in most. Ki67 has biomarker potential to predict fulvestrant outcome and as a quantitative measure of response.
Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Estradiol/análogos & derivados , Antagonistas do Receptor de Estrogênio/farmacologia , Receptores de Estrogênio/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biópsia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estradiol/farmacologia , Estradiol/uso terapêutico , Antagonistas do Receptor de Estrogênio/uso terapêutico , Feminino , Fulvestranto , Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Estadiamento de Neoplasias , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismoRESUMO
We have previously shown that during pregnancy the E-twenty-six (ETS) transcription factor ELF5 directs the differentiation of mammary progenitor cells toward the estrogen receptor (ER)-negative and milk producing cell lineage, raising the possibility that ELF5 may suppress the estrogen sensitivity of breast cancers. To test this we constructed inducible models of ELF5 expression in ER positive luminal breast cancer cells and interrogated them using transcript profiling and chromatin immunoprecipitation of DNA followed by DNA sequencing (ChIP-Seq). ELF5 suppressed ER and FOXA1 expression and broadly suppressed ER-driven patterns of gene expression including sets of genes distinguishing the luminal molecular subtype. Direct transcriptional targets of ELF5, which included FOXA1, EGFR, and MYC, accurately classified a large cohort of breast cancers into their intrinsic molecular subtypes, predicted ER status with high precision, and defined groups with differential prognosis. Knockdown of ELF5 in basal breast cancer cell lines suppressed basal patterns of gene expression and produced a shift in molecular subtype toward the claudin-low and normal-like groups. Luminal breast cancer cells that acquired resistance to the antiestrogen Tamoxifen showed greatly elevated levels of ELF5 and its transcriptional signature, and became dependent on ELF5 for proliferation, compared to the parental cells. Thus ELF5 provides a key transcriptional determinant of breast cancer molecular subtype by suppression of estrogen sensitivity in luminal breast cancer cells and promotion of basal characteristics in basal breast cancer cells, an action that may be utilised to acquire antiestrogen resistance.
Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estrogênios/farmacologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Sítios de Ligação , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano/genética , Humanos , Camundongos , Modelos Biológicos , Fenótipo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-ets/genética , Análise de Sequência de DNA , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacosRESUMO
INTRODUCTION: Upregulation of PI3K/Akt/mTOR signalling in endocrine-resistant breast cancer (BC) has identified mTOR as an attractive target alongside anti-hormones to control resistance. RAD001 (everolimus/Afinitor®), an allosteric mTOR inhibitor, is proving valuable in this setting; however, some patients are inherently refractory or relapse during treatment requiring alternative strategies. Here we evaluate the potential for novel dual mTORC1/2 mTOR kinase inhibitors, exemplified by AZD8055, by comparison with RAD001 in ER + endocrine resistant BC cells. METHODS: In vitro models of tamoxifen (TamR) or oestrogen deprivation resistance (MCF7-X) were treated with RAD001 or AZD8055 alone or combined with anti-hormone fulvestrant. Endpoints included growth, cell proliferation (Ki67), viability and migration, with PI3K/AKT/mTOR signalling impact monitored by Western blotting. Potential ER cross-talk was investigated by immunocytochemistry and RT-PCR. RESULTS: RAD001 was a poor growth inhibitor of MCF7-derived TamR and MCF7-X cells (IC50 ≥1 µM), rapidly inhibiting mTORC1 but not mTORC2/AKT signalling. In contrast AZD8055, which rapidly inhibited both mTORC1 and mTORC2/AKT activity, was a highly effective (P <0.001) growth inhibitor of TamR (IC50 18 nM) and MCF7-X (IC50 24 nM), and of a further T47D-derived tamoxifen resistant model T47D-tamR (IC50 19 nM). AZD8055 significantly (P <0.05) inhibited resistant cell proliferation, increased cell death and reduced migration. Furthermore, dual treatment of TamR or MCF7-X cells with AZD8055 plus fulvestrant provided superior control of resistant growth versus either agent alone (P <0.05). Co-treating with AZD8055 alongside tamoxifen (P <0.01) or oestrogen deprivation (P <0.05) also effectively inhibited endocrine responsive MCF-7 cells. Although AZD8055 inhibited oestrogen receptor (ER) ser167 phosphorylation in TamR and MCF7-X, it had no effect on ER ser118 activity or expression of several ER-regulated genes, suggesting the mTOR kinase inhibitor impact was largely ER-independent. The capacity of AZD8055 for ER-independent activity was further evidenced by growth inhibition (IC5018 and 20 nM) of two acquired fulvestrant resistant models lacking ER. CONCLUSIONS: This is the first report demonstrating dual mTORC1/2 mTOR kinase inhibitors have potential to control acquired endocrine resistant BC, even under conditions where everolimus fails. Such inhibitors may prove of particular benefit when used alongside anti-hormonal treatment as second-line therapy in endocrine resistant disease, and also potentially alongside anti-hormones during the earlier endocrine responsive phase to hinder development of resistance.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas do Receptor de Estrogênio/farmacologia , Morfolinas/farmacologia , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos Hormonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Everolimo , Feminino , Fulvestranto , Humanos , Imunossupressores/farmacologia , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tamoxifeno/farmacologiaRESUMO
Overdose of carbon dioxide gas (CO2) is a common euthanasia method for rodents; however, CO2 exposure activates nociceptors in rats at concentrations equal to or greater than 37% and is reported to be painful in humans at concentrations equal to or greater than 32.5%. Exposure of rats to CO2 could cause pain before loss of consciousness. We used 2 standardized loss of righting reflex (LORR) methods to identify CO2 concentrations associated with unconsciousness in Wistar, Long???Evans, and Sprague???Dawley rats (n = 28 animals per strain). A rotating, motorized cylinder was used to test LORR while the rat was being exposed to increasing concentrations of CO2. LORR was defined based on a 15-second observation period. The 2 methods were 1) a 1-Paw assessment (the righting reflex was considered to be present if one or more paws contacted the cylinder after the rat was positioned in dorsal recumbency), and 2) a 4-Paw assessment (the righting reflex was considered to be present if all 4 paws contacted the cylinder after the rat was positioned in dorsal recumbency). Data were analyzed with Probit regression, and dose-response curves were plotted. 1-Paw EC95 values (CO2 concentration at which LORR occurred for 95% of the population) were Wistar, 27.2%; Long???Evans, 29.2%; and Sprague???Dawley, 35.0%. 4-Paw EC95 values were Wistar, 26.2%; Long???Evans, 25.9%, and Sprague???Dawley, 31.1%. Sprague???Dawley EC95 values were significantly higher in both 1- and 4-Paw tests as compared with Wistar and Long???Evans rats. No differences were detected between sexes for any strain. The 1-Paw EC95 was significantly higher than the 4-Paw EC95 only for Sprague-Dawley rats. These results suggest that a low number of individual rats from the strains studied may experience pain during CO2 euthanasia.
Assuntos
Dióxido de Carbono , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Wistar , Reflexo de Endireitamento , Animais , Ratos , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Masculino , Feminino , Inconsciência/induzido quimicamente , Inconsciência/veterináriaRESUMO
Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Decitabina/farmacologia , Decitabina/uso terapêutico , Decitabina/metabolismo , Epigenoma , Metilação de DNA/genética , Cromatina , Epigênese Genética , DNA/metabolismo , Regulação Neoplásica da Expressão GênicaRESUMO
INTRODUCTION: Fulvestrant shows dose-dependent biological activity. Greater estrogen-receptor (ER) blockade may feasibly be achieved by combining fulvestrant with anastrozole. This pre-surgical study compared fulvestrant plus anastrozole versus either agent alone in patients with ER-positive breast cancer. METHODS: In this double-blind, multicenter trial, 121 patients received fulvestrant 500 mg on Day 1 plus anastrozole 1 mg/day for 14 to 21 days (F + A); fulvestrant plus anastrozole placebo (F); or fulvestrant placebo plus anastrozole (A), 2 to 3 weeks before surgery. ER, progesterone-receptor (PgR) and Ki67 expression were determined from tumor biopsies before treatment and at surgery. RESULTS: A total of 103 paired samples were available (F, n = 35; F+A, n = 31; A, n = 37). All treatments significantly reduced mean ER expression from baseline (F: -41%, P = 0.0001; F + A: -39%, P = 0.0001; A: -13%, P = 0.0034). F and F + A led to greater reductions in ER versus A (both P = 0.0001); F + A did not lead to additional reductions versus F. PgR and Ki67 expression were significantly reduced with all treatments (means were -34% to -45%, and -75% to -85%, respectively; all P = 0.0001), with no differences between groups. CONCLUSIONS: In this short-term study, all treatments reduced ER expression, although F and F + A showed greater reductions than A. No significant differences were detected between the treatment groups in terms of PgR and Ki67 expression. No additional reduction in tumor biomarkers with combination treatment was observed, suggesting that F + A is unlikely to have further clinical benefit over F alone. TRIAL REGISTRATION: Clinicaltrials.gov NCT00259090.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Anastrozol , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Método Duplo-Cego , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Feminino , Seguimentos , Fulvestranto , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Nitrilas/administração & dosagem , Pós-Menopausa , Cuidados Pré-Operatórios , Prognóstico , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Triazóis/administração & dosagemRESUMO
INTRODUCTION: Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS: More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS: The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS: With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years.
Assuntos
Neoplasias da Mama , Pesquisa , Pesquisa Translacional Biomédica , Animais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/terapia , Feminino , HumanosRESUMO
Exposure to CO2 gas is a common rodent euthanasia method. CO2 activates nociceptors in rats and is painful to humans at concentrations equal to or greater than 32.5% The concentration of CO2 at which rodents become unconsciousness is inadequately defined. We used loss of righting reflex (LORR) to identify the concentration at which CO2 caused loss of consciousness in C57Bl/6, CD1 and 129P3J mice (16 females and 16 males per strain). We used a custom built, rotating, motorized cylinder to determine LORR as CO2 concentrations were increased. Two LORR assessment methods were used: 1) a 1-Paw assessment in which the righting reflex was considered to be present if one or more paws contacted the cylinder after rotation into dorsal recumbency and 2) a 4-Paw assessment in which the righting reflex was considered to be present only if all 4 paws contacted the cylinder. LORR test data were analyzed with Probit regression and dose response curves were plotted. 1-Paw EC95 values (CO2 concentration at which LORR occurred for 95% of the population) were: C57Bl/6; 30.7%, CD1; 26.2%, 129P3J; 20.1%. The EC95 for C57Bl/6 was significantly higher than that of the 129P3J mice, with no significant differences between other strains. Four-Paw EC95 values were: C57Bl/6; 22.8%, CD1; 25.3%, 129P3J; 20.1%. Values for 129P3J mice were significantly lower than those of CD1 mice), with no significant difference between other strains. The EC95 varied significantly between 1-Paw and 4-Paw methods only for C57Bl/6 mice. These results suggest a potential for nociception and pain to occur in some individuals of some mouse strains during CO2 euthanasia.
Assuntos
Dióxido de Carbono , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/veterinária , Reflexo , Reflexo de Endireitamento/fisiologia , InconsciênciaRESUMO
Aromatase (CYP19A1) inhibitors are the mainstay therapeutics for the treatment of hormone dependant breast cancer, which accounts for approximately 70% of all breast cancer cases. However, increased resistance to the clinically used aromatase inhibitors, including letrozole and anastrazole, and off target effects, necessitates the development of aromatase inhibitors with improved drug profiles. The development of extended 4th generation pyridine based aromatase inhibitors with dual binding (haem and access channel) is therefore of interest and here we describe the design, synthesis and computational studies. Cytotoxicity and selectivity studies identified the pyridine derivative (4-bromophenyl)(6-(but-2-yn-1-yloxy)benzofuran-2-yl)(pyridin-3-yl)methanol (10c) as optimal with CYP19A1 IC50 0.83 nM (c.f. letrozole IC50 0.70 nM), and an excellent cytotoxicity and selectivity profile. Interestingly, computational studies for the 6-O-butynyloxy (10) and 6-O-pentynyloxy (11) derivatives identified an alternative access channel lined by Phe221, Trp224, Gln225 and Leu477, providing further insight into the potential binding mode and interactions of the non-steroidal aromatase inhibitors.
RESUMO
The response to psychological stress can differ depending on the type and duration of the stressor. Acute stress can facilitate a "fight or flight response" and aid survival, whereas chronic long-term stress with the persistent release of stress hormones such as cortisol has been shown to be detrimental to health. We are now beginning to understand how this stress hormone response impacts important processes such as DNA repair and cell proliferation processes in breast cancer. However, it is not known what epigenetic changes stress hormones induce in breast cancer. Epigenetic mechanisms include modification of DNA and histones within chromatin that may be involved in governing the transcriptional processes in cancer cells in response to changes by endogenous stress hormones. The contribution of endogenous acute or long-term exposure of glucocorticoid stress hormones, and exogenous glucocorticoids to methylation patterns in breast cancer tissues with different aetiologies remains to be evaluated. In vitro and in vivo models were developed to investigate the epigenetic modifications and their contribution to breast cancer progression and aetiology. A panel of triple negative breast cancer cell lines were treated with the glucocorticoid, cortisol which resulted in epigenetic alteration characterised by loss of methylation on promoter regions of tumour suppressor genes including ESR1, and loss of methylation on LINE-1 repetitive element used as a surrogate marker for global methylation. This was verified in vivo in MDA-MB-231 xenografts; the model verified the loss of methylation on ESR1 promoter, and subsequent increase in ESR1 expression in primary tumours in mice subjected to restraint stress. Our study highlights that DNA methylation landscape in breast cancer can be altered in response to stress and glucocorticoid treatment.
Assuntos
Receptor alfa de Estrogênio , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Fulvestranto , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Glucocorticoides/farmacologia , Hidrocortisona/farmacologia , Metilação de DNARESUMO
NEWEST (Neoadjuvant Endocrine Therapy for Women with Estrogen-Sensitive Tumors) is the first study to compare biological and clinical activity of fulvestrant 500 versus 250 mg in the neoadjuvant breast cancer setting. We hypothesized that fulvestrant 500 mg may be superior to 250 mg in blocking estrogen receptor (ER) signaling and growth. A multicenter, randomized, open-label, Phase II study was performed to compare fulvestrant 500 mg (500 mg/month plus 500 mg on day 14 of month 1) versus fulvestrant 250 mg/month for 16 weeks prior to surgery in postmenopausal women with ER+ locally advanced breast cancer. Core biopsies at baseline, week 4, and surgery were assessed for biomarker changes. Primary endpoint: change in Ki67 labeling index (LI) from baseline to week 4 determined by automated computer imaging system (ACIS). Secondary endpoints: ER protein expression and function; progesterone receptor (PgR) expression; tumor response; tolerability. ER and PgR were examined retrospectively using the H score method. A total of 211 patients were randomized (fulvestrant 500 mg: n = 109; 250 mg: n = 102). At week 4, fulvestrant 500 mg resulted in greater reduction of Ki67 LI and ER expression versus 250 mg (-78.8 vs. -47.4% [p < 0.0001] and -25.0 vs. -13.5% [p = 0.0002], respectively [ACIS]); PgR suppression was not significantly different (-22.7 vs. -17.6; p = 0.5677). However, H score detected even greater suppression of ER (-50.3 vs. -13.7%; p < 0.0001) and greater PgR suppression (-80.5 vs. -46.3%; p = 0.0018) for fulvestrant 500 versus 250 mg. At week 16, tumor response rates were 22.9 and 20.6% for fulvestrant 500 and 250 mg, respectively, with considerable decline in all markers by both ACIS and H score. No detrimental effects on endometrial thickness or bone markers and no new safety concerns were identified. This provides the first evidence of greater biological activity for fulvestrant 500 versus 250 mg in depleting ER expression, function, and growth.
Assuntos
Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Estradiol/análogos & derivados , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Hormonais/efeitos adversos , Neoplasias da Mama/metabolismo , Relação Dose-Resposta a Droga , Estradiol/efeitos adversos , Estradiol/uso terapêutico , Feminino , Fulvestranto , Humanos , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Terapia Neoadjuvante , Neoplasias Hormônio-Dependentes/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Resultado do TratamentoRESUMO
Global gene expression profiling (GEP) studies of breast cancer have identified distinct biological classes with different clinical and therapeutic implications. Oestrogen receptor (ER) has been found to be a central marker of the molecular signature. GEP studies have consistently recognized a molecularly distinct class of tumours that is characterized by high-level expression of ER and other biomarkers recognized to be characteristic of normal luminal cells of the breast. This class is the largest of the GEP-defined molecular subclasses, comprising 60-70% of breast cancer cases. Moreover, it has been proposed that this group of tumours is composed of at least two subclasses distinguished by differing GEP profiles. At present, there is no consensus on the definition of the luminal subclasses and, in clinical practice, luminal-like tumours and ER-positive tumours are frequently considered to be the same. A better understanding of the biological features of luminal tumours could lead to their improved characterization and consistent identification. In this review, we explore the concept and definitions of the luminal-like class of breast carcinoma and their contribution to our understanding of their molecular features, clinical significance and therapeutic implications.
Assuntos
Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Receptores de Estrogênio/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/classificação , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Receptores de Estrogênio/classificação , Receptores de Estrogênio/genéticaRESUMO
BACKGROUND: Acquired resistance to endocrine therapy in breast cancer is a significant problem with relapse being associated with local and/or regional recurrence and frequent distant metastases. Breast cancer cell models reveal that endocrine resistance is accompanied by a gain in aggressive behaviour driven in part through altered growth factor receptor signalling, particularly involving erbB family receptors. Recently we identified that CD44, a transmembrane cell adhesion receptor known to interact with growth factor receptors, is upregulated in tamoxifen-resistant (TamR) MCF7 breast cancer cells. The purpose of this study was to explore the consequences of CD44 upregulation in an MCF7 cell model of acquired tamoxifen resistance, specifically with respect to the hypothesis that CD44 may influence erbB activity to promote an adverse phenotype. METHODS: CD44 expression in MCF7 and TamR cells was assessed by RT-PCR, Western blotting and immunocytochemistry. Immunofluorescence and immunoprecipitation studies revealed CD44-erbB associations. TamR cells (± siRNA-mediated CD44 suppression) or MCF7 cells (± transfection with the CD44 gene) were treated with the CD44 ligand, hyaluronon (HA), or heregulin and their in vitro growth (MTT), migration (Boyden chamber and wound healing) and invasion (Matrigel transwell migration) determined. erbB signalling was assessed using Western blotting. The effect of HA on erbB family dimerisation in TamR cells was determined by immunoprecipitation in the presence or absence of CD44 siRNA. RESULTS: TamR cells overexpressed CD44 where it was seen to associate with erbB2 at the cell surface. siRNA-mediated suppression of CD44 in TamR cells significantly attenuated their response to heregulin, inhibiting heregulin-induced cell migration and invasion. Furthermore, TamR cells exhibited enhanced sensitivity to HA, with HA treatment resulting in modulation of erbB dimerisation, ligand-independent activation of erbB2 and EGFR and induction of cell migration. Overexpression of CD44 in MCF7 cells, which lack endogenous CD44, generated an HA-sensitive phenotype, with HA-stimulation promoting erbB/EGFR activation and migration. CONCLUSIONS: These data suggest an important role for CD44 in the context of tamoxifen-resistance where it may augment cellular response to erbB ligands and HA, factors that are reported to be present within the tumour microenvironment in vivo. Thus CD44 may present an important determinant of breast cancer progression in the setting of endocrine resistance.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/genética , Ácido Hialurônico/farmacologia , Neuregulina-1/farmacologia , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Células MCF-7 , Microscopia de Fluorescência , Multimerização Proteica/efeitos dos fármacos , Interferência de RNA , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
One in every eight women will be diagnosed with breast cancer during their lifetime and approximately 70% of all patients are oestrogen receptor (ER) positive depending upon oestrogen for their growth accounting for third generation aromatase (CYP19A1) inhibitors being the mainstay in the treatment of ER-positive breast cancer. Despite the success of current aromatase inhibitors, acquired resistance occurs after prolonged therapy. Although the precise mechanisms of resistance are not known, lack of cross resistance among aromatase inhibitors drives the need for a newer generation of inhibitors to overcome this resistance alongside minimising toxicity and adverse effects. Novel triazole-based inhibitors were designed based on previously published parent compound 5a, making use of the now available crystal structure of CYP19A1 (PDB 3S79), to make modifications at specific sites to explore the potential of dual binding at both the active site and the access channel. Modifications included adding long chain substituents e.g. but-2-ynyloxy and pent-2-ynyloxy at different positions including the most active compound 13h with IC50 value in the low picomolar range (0.09 nM). Aromatase inhibition results paired with molecular dynamics studies provided a clear structure activity relationship and favourable dual binding mode was verified. Toxicity assays and CYP selectivity profile studies for some example compounds were performed to assess the safety profile of the prepared inhibitors providing the basis for the 4th generation nonsteroidal aromatase inhibitors.
Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Aromatase/metabolismo , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Receptores de Estrogênio , Triazóis/farmacologiaRESUMO
Aim: Zinc is a key secondary messenger that can regulate multiple signalling pathways within cancer cells, thus its levels need to be strictly controlled. The Zrt, Irt-like protein (ZIP, SLC39A) family of zinc transporters increase cytosolic zinc from either extracellular or intracellular stores. This study examines the relevance of zinc transporters ZIP7 and ZIP6 as therapeutic targets in tamoxifen resistant (TAMR) breast cancer. Methods: A series of in vitro assays, including immunohistochemistry, immunofluorescence, flow cytometry, and western blotting were used to evaluate levels and activity of ZIP7 and ZIP6 in models of TAMR and sensitive (MCF-7) breast cancer. Analyses of these transporters in the clinical setting were performed using publicly available online resources: Gene Expression Profiling Interactive Analysis (GEPIA)2 and Kaplan-Meier Plotter (KmPlot). Results: Both total and activated levels of ZIP7 were significantly elevated in TAMR cells versus responsive MCF-7 cells. This was accompanied by an associated increase in free cytoplasmic zinc leading to amplification of downstream signals. Consistent with our proposed model, activated ZIP6 levels correlated with mitotic cells, which could be efficiently inhibited through use of our anti-ZIP6 monoclonal antibody. Mitotic inhibition translated to impaired proliferation in both models, with TAMR cells displaying increased sensitivity. Analysis of matched tumour and normal breast samples from patients revealed significant increases in both ZIP7 and ZIP6 in tumours, as well as family member ZIP4. Kaplan-Meier analysis revealed that high ZIP7 levels correlated with decreased overall and relapse-free survival (RFS) of patients, including patient groups who had received systemic endocrine therapy or tamoxifen only. In contrast, high ZIP6 levels were significantly linked to improved overall and RFS in all patients, as well as RFS in patients that received systemic endocrine therapy. Conclusions: TAMR cells displayed increased activity of both ZIP7 and ZIP6 transporters compared to anti-hormone responsive cells, suggesting their potential as novel therapeutic targets following development of resistant disease.