Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648216

RESUMO

In the bloodstream of mammalian hosts, African trypanosomes face the challenge of protecting their invariant surface receptors from immune detection. This crucial role is fulfilled by a dense, glycosylated protein layer composed of variant surface glycoproteins (VSGs), which undergo antigenic variation and provide a physical barrier that shields the underlying invariant surface glycoproteins (ISGs). The protective shield's limited permeability comes at the cost of restricted access to the extracellular host environment, raising questions regarding the specific function of the ISG repertoire. In this study, we employ an integrative structural biology approach to show that intrinsically disordered membrane-proximal regions are a common feature of members of the ISG super-family, conferring the ability to switch between compact and elongated conformers. While the folded, membrane-distal ectodomain is buried within the VSG layer for compact conformers, their elongated counterparts would enable the extension beyond it. This dynamic behavior enables ISGs to maintain a low immunogenic footprint while still allowing them to engage with the host environment when necessary. Our findings add further evidence to a dynamic molecular organization of trypanosome surface antigens wherein intrinsic disorder underpins the characteristics of a highly flexible ISG proteome to circumvent the constraints imposed by the VSG coat.


Assuntos
Tripanossomíase Africana , Glicoproteínas Variantes de Superfície de Trypanosoma , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/imunologia , Proteínas de Protozoários/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Animais
2.
Protein Sci ; 33(1): e4852, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059674

RESUMO

The circumsporozoite protein (CSP) is the main surface antigen of the Plasmodium sporozoite (SPZ) and forms the basis of the currently only licensed anti-malarial vaccine (RTS,S/AS01). CSP uniformly coats the SPZ and plays a pivotal role in its immunobiology, in both the insect and the vertebrate hosts. Although CSP's N-terminal domain (CSPN ) has been reported to play an important role in multiple CSP functions, a thorough biophysical and structural characterization of CSPN is currently lacking. Here, we present an alternative method for the recombinant production and purification of CSPN from Plasmodium falciparum (PfCSPN ), which provides pure, high-quality protein preparations with high yields. Through an interdisciplinary approach combining in-solution experimental methods and in silico analyses, we provide strong evidence that PfCSPN is an intrinsically disordered region displaying some degree of compaction.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Vacinas Antimaláricas/química , Vacinas Antimaláricas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química
3.
Microbiol Spectr ; 12(3): e0372323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315026

RESUMO

The World Health Organization's goal to combat tuberculosis (TB) is hindered by the emergence of anti-microbial resistance, therefore necessitating the exploration of new drug targets. Multidrug regimens are indispensable in TB therapy as they provide synergetic bactericidal effects, shorten treatment duration, and reduce the risk of resistance development. The research within our European RespiriTB consortium explores Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we describe the development and validation of a luminescence-coupled, target-based assay for the identification of novel compounds inhibiting Mycobacterium tuberculosis mycothione reductase (MtrMtb), an enzyme with a role in the protection against oxidative stress. Recombinant MtrMtb was employed for the development of a highly sensitive, robust high-throughput screening (HTS) assay by coupling enzyme activity to a bioluminescent readout. Its application in a semi-automated setting resulted in the screening of a diverse library of ~130,000 compounds, from which 19 hits were retained after an assessment of their potency, selectivity, and specificity. The selected hits formed two clusters and four fragment molecules, which were further evaluated in whole-cell and intracellular infection assays. The established HTS discovery pipeline offers an opportunity to deliver novel MtrMtb inhibitors and lays the foundation for future efforts in developing robust biochemical assays for the identification and triaging of inhibitors from high-throughput library screens. IMPORTANCE: The growing anti-microbial resistance poses a global public health threat, impeding progress toward eradicating tuberculosis. Despite decades of active research, there is still a dire need for the discovery of drugs with novel modes of action and exploration of combination drug regimens. Within the European RespiriTB consortium, we explore Mycobacterium tuberculosis energy metabolism to identify new drug candidates that synergize with bedaquiline, with the aim of discovering more efficient combination drug regimens. In this study, we present the development of a high-throughput screening pipeline that led to the identification of M. tuberculosis mycothione reductase inhibitors.


Assuntos
Mycobacterium tuberculosis , Oxirredutases , Tuberculose , Humanos , Antituberculosos/química , Ensaios de Triagem em Larga Escala , Desenho de Fármacos , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA