Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Biochem Biophys Res Commun ; 649: 79-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758482

RESUMO

Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.


Assuntos
Óxido Nítrico , Trametes , Humanos , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Trametes/metabolismo , Glutationa Transferase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
2.
Environ Microbiol ; 23(3): 1594-1607, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393164

RESUMO

Secreted proteins are key players in fungal physiology and cell protection against external stressing agents and antifungals. Oak stress-induced protein 1 (OSIP1) is a fungal-specific protein with unknown function. By using Podospora anserina and Phanerochaete chrysosporium as models, we combined both in vivo functional approaches and biophysical characterization of OSIP1 recombinant protein. The P. anserina OSIP1Δ mutant showed an increased sensitivity to the antifungal caspofungin compared to the wild type. This correlated with the production of a weakened extracellular exopolysaccharide/protein matrix (ECM). Since the recombinant OSIP1 from P. chrysosporium self-assembled as fibers and was capable of gelation, it is likely that OSIP1 is linked to ECM formation that acts as a physical barrier preventing drug toxicity. Moreover, compared to the wild type, the OSIP1Δ mutant was more sensitive to oak extractives including chaotropic phenols and benzenes. It exhibited a strongly modified secretome pattern and an increased production of proteins associated to the cell-wall integrity signalling pathway, when grown on oak sawdust. This demonstrates that OSIP1 has also an important role in fungal resistance to extractive-induced stress.


Assuntos
Phanerochaete , Podospora , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Phanerochaete/metabolismo , Transdução de Sinais
3.
Fungal Genet Biol ; 148: 103506, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450403

RESUMO

The Omega class of glutathione transferases (GSTs) forms a distinct class within the cytosolic GST superfamily because most of them possess a catalytic cysteine residue. The human GST Omega 1 isoform was first characterized twenty years ago, but it took years of work to clarify the roles of the human isoforms. Concerning the kingdom of fungi, little is known about the cellular functions of Omega glutathione transferases (GSTOs), although they are widely represented in some of these organisms. In this study, we re-assess the phylogeny and the classification of GSTOs based on 240 genomes of mushroom-forming fungi (Agaricomycetes). We observe that the number of GSTOs is not only extended in the order of Polyporales but also in other orders such as Boletales. Our analysis leads to a new classification in which the fungal GSTOs are divided into two Types A and B. The catalytic residue of Type-A is either cysteine or serine, while that of Type-B is cysteine. The present study focuses on Trametes versicolor GSTO isoforms that possess a catalytic cysteine residue. Transcriptomic data show that Type-A GSTOs are constitutive enzymes while Type-B are inducible ones. The crystallographic analysis reveals substantial structural differences between the two types while they have similar biochemical profiles in the tested conditions. Additionally, these enzymes have the ability to bind antioxidant molecules such as wood polyphenols in two possible binding sites as observed from X-ray structures. The multiplication of GSTOs could allow fungal organisms to adapt more easily to new environments.


Assuntos
Agaricales/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Variação Genética , Glutationa Transferase/química , Glutationa Transferase/genética , Filogenia , Agaricales/química , Agaricales/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Glutationa Transferase/classificação , Glutationa Transferase/metabolismo , Modelos Moleculares , Conformação Proteica
4.
J Nat Prod ; 83(10): 2960-2966, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33001642

RESUMO

Glutathione transferases comprise a large class of multifunctional enzymes, some involved in detoxification pathways. Since these enzymes are able to interact with potentially toxic molecules, they could be used as targets to screen for compounds with biological activity. To test this hypothesis, glutathione transferases (GSTs) from the white-rot fungus Trametes versicolor have been used to screen for antifungal molecules from a library of tropical wood extracts. The interactions between a set of six GSTs from the omega class and 116 extracts from 21 tropical species were quantified using a high-throughput thermal shift assay. A correlation between these interactions and the antifungal properties of the tested extracts was demonstrated. This approach has been extended to the fractionation of an Andira coriacea extract and led to the detection of maackiain and lapachol in this wood. Altogether, the present results supported the hypothesis that such detoxification enzymes could be used to detect biologically active molecules.


Assuntos
Glutationa Transferase , Antifúngicos , Glutationa , Estrutura Molecular , Polyporaceae , Trametes , Madeira
5.
Environ Microbiol ; 20(10): 3890-3901, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30209877

RESUMO

Extensive evidence showed that the efficiency of fungal wood degradation is closely dependent on their ability to cope with the myriad of putative toxic compounds called extractives released during this process. By analysing global gene expression of Phanerochaete chrysosporium after short oak extractive treatment (1, 3 and 6 h), we show that the early molecular response of the fungus concerns first mitochondrial stress rescue followed by the oxidation and finally conjugation of the compounds. During these early responses, the lignolytic degradative system is not induced, rather some small secreted proteins could play an important role in cell protection or signaling. By focusing on the functional characterization of an hitherto uncharacterized glutathione transferase, we show that this enzyme interacts with wood molecules suggesting that it could be involved in the detoxification of some of them, or act as a scavenger to prevent their cytosolic toxicity and favour their transport.


Assuntos
Phanerochaete/enzimologia , Phanerochaete/metabolismo , Extratos Vegetais/farmacologia , Quercus/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Oxirredução , Phanerochaete/efeitos dos fármacos , Phanerochaete/genética , Quercus/microbiologia , Madeira/química , Madeira/microbiologia
6.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453263

RESUMO

Trametesversicolor is a wood-inhabiting agaricomycete known for its ability to cause strong white-rot decay on hardwood and for its high tolerance of phenolic compounds. The goal of the present work was to gain insights into the molecular biology and biochemistry of the heme-including class II and dye-decolorizing peroxidases secreted by this fungus. Proteomic analysis of the secretome of T. versicolor BRFM 1218 grown on oak wood revealed a set of 200 secreted proteins, among which were the dye-decolorizing peroxidase TvDyP1 and the versatile peroxidase TvVP2. Both peroxidases were heterologously produced in Escherichia coli, biochemically characterized, and tested for the ability to oxidize complex substrates. Both peroxidases were found to be active against several substrates under acidic conditions, and TvDyP1 was very stable over a relatively large pH range of 2.0 to 6.0, while TvVP2 was more stable at pH 5.0 to 6.0 only. The thermostability of both enzymes was also tested, and TvDyP1 was globally found to be more stable than TvVP2. After 180 min of incubation at temperatures ranging from 30 to 50°C, the activity of TvVP2 drastically decreased, with 10 to 30% of the initial activity retained. Under the same conditions, TvDyP1 retained 20 to 80% of its enzyme activity. The two proteins were catalytically characterized, and TvVP2 was shown to accept a wider range of reducing substrates than TvDyP1. Furthermore, both enzymes were found to be active against two flavonoids, quercetin and catechin, found in oak wood, with TvVP2 displaying more rapid oxidation of the two compounds. They were tested for the ability to decolorize five industrial dyes, and TvVP2 presented a greater ability to oxidize and decolorize the dye substrates than TvDyP1.IMPORTANCETrametesversicolor is a wood-inhabiting agaricomycete known for its ability to cause strong white-rot decay on hardwood and for its high tolerance of phenolic compounds. Among white-rot fungi, the basidiomycete T. versicolor has been extensively studied for its ability to degrade wood, specifically lignin, thanks to an extracellular oxidative enzymatic system. The corresponding oxidative system was previously studied in several works for classical lignin and manganese peroxidases, and in this study, two new components of the oxidative system of T. versicolor, one dye-decolorizing peroxidase and one versatile peroxidase, were biochemically characterized in depth and compared to other fungal peroxidases.


Assuntos
Corantes/metabolismo , Proteínas Fúngicas/genética , Peroxidases/genética , Trametes/genética , Poluentes Químicos da Água/metabolismo , Proteínas Fúngicas/metabolismo , Oxirredução , Peroxidases/metabolismo , Proteômica , Trametes/enzimologia
7.
Fungal Genet Biol ; 83: 103-112, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26348000

RESUMO

The intracellular systems of detoxification are crucial for the survival of wood degrading fungi. Within these systems, glutathione transferases could play a major role since this family of enzymes is specifically extended in lignolytic fungi. In particular the Ure2p class represents one third of the total GST number in Phanerochaete chrysosporium. These proteins have been phylogenetically split into two subclasses called Ure2pA and Ure2pB. Ure2pB can be classified as Nu GSTs because of shared structural and functional features with previously characterized bacterial isoforms. Ure2pA can rather be qualified as Nu-like GSTs since they exhibit a number of differences. Ure2pA possess a classical transferase activity, a more divergent catalytic site and a higher structural flexibility for some of them, compared to Nu GSTs. The characterization of four members of this Ure2pA subclass (PcUre2pA4, PcUre2pA5, PcUre2pA6 and PcUre2pA8) revealed specific functional and structural features, suggesting that these enzymes have rapidly evolved and differentiated, probably to adapt to the complex chemical environment associated with wood decomposition.


Assuntos
Glutationa Transferase/química , Glutationa Transferase/metabolismo , Sequência de Aminoácidos , Biodiversidade , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Proteínas Fúngicas/química , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/genética , Isoenzimas , Dados de Sequência Molecular , Phanerochaete/classificação , Phanerochaete/enzimologia , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Madeira/microbiologia
8.
BMC Microbiol ; 15: 123, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26081847

RESUMO

BACKGROUND: Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. RESULTS: Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. CONCLUSIONS: Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Brassica/microbiologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Derivados de Benzeno/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Essenciais , Genoma Fúngico , Isotiocianatos/farmacologia , Filogenia , Doenças das Plantas/microbiologia , Especificidade por Substrato
9.
Environ Microbiol ; 16(7): 2238-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24286477

RESUMO

Wood recycling is key to forest biogeochemical cycles, largely driven by microorganisms such as white-rot fungi which naturally coexist with bacteria in the environment. We have tested whether and to what extent the diversity of the bacterial community associated with wood decay is determined by wood and/or by white-rot fungus Phanerochaete chrysosporium. We combined a microcosm approach with an enrichment procedure, using beech sawdust inoculated with or without P.chrysosporium. During 18 weeks, we used 16S rRNA gene-based pyrosequencing to monitor the forest bacterial community inoculated into these microcosms. We found bacterial communities associated with wood to be substantially less diverse than the initial forest soil inoculum. The presence of most bacterial operational taxonomic units (OTUs) varied over time and between replicates, regardless of their treatment, suggestive of the stochastic processes. However, we observed two OTUs belonging to Xanthomonadaceae and Rhizobium, together representing 50% of the relative bacterial abundance, as consistently associated with the wood substrate, regardless of fungal presence. Moreover, after 12 weeks, the bacterial community composition based on relative abundance was significantly modified by the presence of the white-rot fungus. Effectively, members of the Burkholderia genus were always associated with P.chrysosporium, representing potential taxonomic bioindicators of the white-rot mycosphere.


Assuntos
Microbiota/genética , Phanerochaete/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo , Madeira/microbiologia , Biodiversidade , Burkholderia/classificação , Burkholderia/genética , Fagus/microbiologia , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala , Phanerochaete/classificação , Rhizobium/classificação , Rhizobium/genética , Fatores de Tempo , Árvores/microbiologia , Xanthomonadaceae/classificação , Xanthomonadaceae/genética
10.
Appl Environ Microbiol ; 80(20): 6316-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107961

RESUMO

The first steps of wood degradation by fungi lead to the release of toxic compounds known as extractives. To better understand how lignolytic fungi cope with the toxicity of these molecules, a transcriptomic analysis of Phanerochaete chrysosporium genes was performed in the presence of oak acetonic extracts. It reveals that in complement to the extracellular machinery of degradation, intracellular antioxidant and detoxification systems contribute to the lignolytic capabilities of fungi, presumably by preventing cellular damages and maintaining fungal health. Focusing on these systems, a glutathione transferase (P. chrysosporium GTT2.1 [PcGTT2.1]) has been selected for functional characterization. This enzyme, not characterized so far in basidiomycetes, has been classified first as a GTT2 compared to the Saccharomyces cerevisiae isoform. However, a deeper analysis shows that the GTT2.1 isoform has evolved functionally to reduce lipid peroxidation by recognizing high-molecular-weight peroxides as substrates. Moreover, the GTT2.1 gene has been lost in some non-wood-decay fungi. This example suggests that the intracellular detoxification system evolved concomitantly with the extracellular ligninolytic machinery in relation to the capacity of fungi to degrade wood.


Assuntos
Glutationa Transferase/metabolismo , Phanerochaete/efeitos dos fármacos , Phanerochaete/genética , Extratos Vegetais/farmacologia , Quercus/química , Acetona/química , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Glutationa Transferase/genética , Inativação Metabólica , Isoenzimas , Lignina/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Peróxidos/química , Peróxidos/metabolismo , Phanerochaete/metabolismo , Extratos Vegetais/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Madeira/microbiologia
11.
Appl Microbiol Biotechnol ; 98(23): 9527-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25343973

RESUMO

A number of prokaryotes actively contribute to lignin degradation in nature and their activity could be of interest for many applications including the production of biogas/biofuel from lignocellulosic biomass and biopulping. This review compares the reliability and efficiency of the culture-dependent screening methods currently used for the isolation of ligninolytic prokaryotes. Isolated prokaryotes exhibiting lignin-degrading potential are presented according to their phylogenetic groups. With the development of bioinformatics, culture-independent techniques are emerging that allow larger-scale data mining for ligninolytic prokaryotic functions but today, these techniques still have some limits. In this work, two phylogenetic affiliations of isolated prokaryotes exhibiting ligninolytic potential and laccase-encoding prokaryotes were determined on the basis of 16S rDNA sequences, providing a comparative view of results obtained by the two types of screening techniques. The combination of laboratory culture and bioinformatics approaches is a promising way to explore lignin-degrading prokaryotes.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Lignina/metabolismo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biotransformação , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Genótipo , Hidrólise , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Proc Natl Acad Sci U S A ; 108(22): 9166-71, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21536894

RESUMO

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Assuntos
Basidiomycota/genética , Fungos/genética , Triticum/microbiologia , Perfilação da Expressão Gênica , Genes Fúngicos , Genoma , Genoma Fúngico , Modelos Genéticos , Nitratos/química , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Análise de Sequência de DNA , Sulfatos/química
13.
J Biol Chem ; 287(46): 39001-11, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23007392

RESUMO

Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional ß-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4' in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.


Assuntos
Glutationa Transferase/química , Glutationa Transferase/metabolismo , Phanerochaete/metabolismo , Naftalenossulfonato de Anilina/farmacologia , Sítios de Ligação , Ligação Competitiva , Biotecnologia/métodos , Clonagem Molecular , Cristalografia por Raios X/métodos , Glutationa/química , Lignina , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Proteínas Recombinantes/química
14.
Microb Biotechnol ; 16(7): 1438-1455, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191200

RESUMO

Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.


Assuntos
Antifúngicos , Raios Ultravioleta , Antifúngicos/toxicidade , Antifúngicos/metabolismo , Estresse Oxidativo , Fungos/metabolismo
15.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108951

RESUMO

Fomitiporia mediterranea (Fmed) is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of Fmed in ECD etiology, justifying an increase in research interest related to Fmed's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs. white rot) between biomolecular decay pathways induced by Basidiomycota species, our research aims to investigate the potential for non-enzymatic mechanisms adopted by Fmed, which is typically described as a white rot fungus. Our results demonstrate how, in liquid culture reproducing nutrient restriction conditions often found in wood, Fmed can produce low molecular weight compounds, the hallmark of the non-enzymatic "chelator-mediated Fenton" (CMF) reaction, originally described for brown rot fungi. CMF reactions can redox cycle with ferric iron, generating hydrogen peroxide and ferrous iron, necessary reactants leading to hydroxyl radical (•OH) production. These observations led to the conclusion that a non-enzymatic radical-generating CMF-like mechanism may be utilized by Fmed, potentially together with an enzymatic pool, to contribute to degrading wood constituents; moreover, indicating significant variability between strains.

16.
J Fungi (Basel) ; 9(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233247

RESUMO

Fomitiporia mediterranea M. Fischer (Fmed) is a white-rot wood-decaying fungus associated with one of the most important and challenging diseases in vineyards: Esca. To relieve microbial degradation, woody plants, including Vitis vinifera, use structural and chemical weapons. Lignin is the most recalcitrant of the wood cell wall structural compounds and contributes to wood durability. Extractives are constitutive or de novo synthesized specialized metabolites that are not covalently bound to wood cell walls and are often associated with antimicrobial properties. Fmed is able to mineralize lignin and detoxify toxic wood extractives, thanks to enzymes such as laccases and peroxidases. Grapevine wood's chemical composition could be involved in Fmed's adaptation to its substrate. This study aimed at deciphering if Fmed uses specific mechanisms to degrade grapevine wood structure and extractives. Three different wood species, grapevine, beech, and oak. were exposed to fungal degradation by two Fmed strains. The well-studied white-rot fungus Trametes versicolor (Tver) was used as a comparison model. A simultaneous degradation pattern was shown for Fmed in the three degraded wood species. Wood mass loss after 7 months for the two fungal species was the highest with low-density oak wood. For the latter wood species, radical differences in initial wood density were observed. No differences between grapevine or beech wood degradation rates were observed after degradation by Fmed or by Tver. Contrary to the Tver secretome, one manganese peroxidase isoform (MnP2l, jgi protein ID 145801) was the most abundant in the Fmed secretome on grapevine wood only. Non-targeted metabolomic analysis was conducted on wood and mycelium samples, using metabolomic networking and public databases (GNPS, MS-DIAL) for metabolite annotations. Chemical differences between non-degraded and degraded woods, and between mycelia grown on different wood species, are discussed. This study highlights Fmed physiological, proteomic and metabolomic traits during wood degradation and thus contributes to a better understanding of its wood degradation mechanisms.

17.
J Biol Chem ; 286(11): 9162-73, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21177852

RESUMO

The white rot fungus Phanerochaete chrysosporium, a saprophytic basidiomycete, possesses a large number of cytosolic glutathione transferases, eight of them showing similarity to the Omega class. PcGSTO1 (subclass I, the bacterial homologs of which were recently proposed, based on their enzymatic function, to constitute a new class of glutathione transferase named S-glutathionyl-(chloro)hydroquinone reductases) and PcGSTO3 (subclass II related to mammalian homologs) have been investigated in this study. Biochemical investigations demonstrate that both enzymes are able to catalyze deglutathionylation reactions thanks to the presence of a catalytic cysteinyl residue. This reaction leads to the formation of a disulfide bridge between the conserved cysteine and the removed glutathione from their substrate. The substrate specificity of each isoform differs. In particular PcGSTO1, in contrast to PcGSTO3, was found to catalyze deglutathionylation of S-glutathionyl-p-hydroquinone substrates. The three-dimensional structure of PcGSTO1 presented here confirms the hypothesis that it belongs not only to a new biological class but also to a new structural class that we propose to name GST xi. Indeed, it shows specific features, the most striking ones being a new dimerization mode and a catalytic site that is buried due to the presence of long loops and that contains the catalytic cysteine.


Assuntos
Basidiomycota/enzimologia , Proteínas Fúngicas/química , Glutationa Transferase/química , Multimerização Proteica , Dissulfetos/química , Proteínas Fúngicas/classificação , Glutationa Transferase/classificação , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
18.
Front Plant Sci ; 13: 921961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909746

RESUMO

Eutypa dieback and Esca complex are fungal diseases of grape that cause large economic losses in vineyards. These diseases require, or are enhanced by, fungal consortia growth which leads to the deterioration of the wood tissue in the grapevine trunk; however, pathogenesis and the underlying mechanisms involved in the woody tissue degradation are not understood. We examined the role that the consortia fungal metabolome have in generating oxygen radicals that could potentially play a role in trunk decay and pathogenesis. Unique metabolites were isolated from the consortia fungi with some metabolites preferentially reducing iron whereas others were involved in redox cycling to generate hydrogen peroxide. Metabolite suites with different functions were produced when fungi were grown separately vs. when grown in consortia. Chelator-mediated Fenton (CMF) chemistry promoted by metabolites from these fungi allowed for the generation of highly reactive hydroxyl radicals. We hypothesize that this mechanism may be involved in pathogenicity in grapevine tissue as a causal mechanism associated with trunk wood deterioration/necrosis in these two diseases of grape.

19.
Front Plant Sci ; 13: 988709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226293

RESUMO

Fomitiporia mediterranea (Fmed) is one of the main fungal species found in grapevine wood rot, also called "amadou," one of the most typical symptoms of grapevine trunk disease Esca. This fungus is functionally classified as a white-rot, able to degrade all wood structure polymers, i.e., hemicelluloses, cellulose, and the most recalcitrant component, lignin. Specific enzymes are secreted by the fungus to degrade those components, namely carbohydrate active enzymes for hemicelluloses and cellulose, which can be highly specific for given polysaccharide, and peroxidases, which enable white-rot to degrade lignin, with specificities relating to lignin composition as well. Furthermore, besides polymers, a highly diverse set of metabolites often associated with antifungal activities is found in wood, this set differing among the various wood species. Wood decayers possess the ability to detoxify these specific extractives and this ability could reflect the adaptation of these fungi to their specific environment. The aim of this study is to better understand the molecular mechanisms used by Fmed to degrade wood structure, and in particular its potential adaptation to grapevine wood. To do so, Fmed was cultivated on sawdust from different origins: grapevine, beech, and spruce. Carbon mineralization rate, mass loss, wood structure polymers contents, targeted metabolites (extractives) and secreted proteins were measured. We used the well-known white-rot model Trametes versicolor for comparison. Whereas no significant degradation was observed with spruce, a higher mass loss was measured on Fmed grapevine culture compared to beech culture. Moreover, on both substrates, a simultaneous degradation pattern was demonstrated, and proteomic analysis identified a relative overproduction of oxidoreductases involved in lignin and extractive degradation on grapevine cultures, and only few differences in carbohydrate active enzymes. These results could explain at least partially the adaptation of Fmed to grapevine wood structural composition compared to other wood species, and suggest that other biotic and abiotic factors should be considered to fully understand the potential adaptation of Fmed to its ecological niche. Proteomics data are available via ProteomeXchange with identifier PXD036889.

20.
Front Microbiol ; 13: 844264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369524

RESUMO

Fomitiporia mediterranea is a Basidiomycetes fungus associated with some of the Esca complex diseases and responsible for decay in grapevine wood. Its role in the onset of foliar symptoms has recently been reconsidered, mainly after evidence showing a reduction in foliar symptom expression after removal of rotten wood. The study of its degradation pathways has already been approached by other authors, and with this study much information is consolidated. A microscopic observation of degraded wood provides a first approach to the characterization of F. mediterranea modalities of wood cellular structure degradation. The decay of grapevine wood was reproduced in vitro, and the measurement of each wood-forming polymer loss highlighted characteristics of F. mediterranea common to selective white rot and showed how fungal strain and vine variety are factors determining the wood degradation. All these observations were supported by the analysis of the laccase and manganese peroxidase enzyme activity, as well as by the expression of the genes coding 6 putative laccase isoforms and 3 manganese peroxidase isoforms, thereby highlighting substantial intraspecific variability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA