RESUMO
The entry of mammalian cells into the DNA synthesis phase (S phase) represents a key event in cell division1. According to current models of the cell cycle, the kinase CDC7 constitutes an essential and rate-limiting trigger of DNA replication, acting together with the cyclin-dependent kinase CDK2. Here we show that CDC7 is dispensable for cell division of many different cell types, as determined using chemical genetic systems that enable acute shutdown of CDC7 in cultured cells and in live mice. We demonstrate that another cell cycle kinase, CDK1, is also active during G1/S transition both in cycling cells and in cells exiting quiescence. We show that CDC7 and CDK1 perform functionally redundant roles during G1/S transition, and at least one of these kinases must be present to allow S-phase entry. These observations revise our understanding of cell cycle progression by demonstrating that CDK1 physiologically regulates two distinct transitions during cell division cycle, whereas CDC7 has a redundant function in DNA replication.
Assuntos
Proteínas de Ciclo Celular , Fase G1 , Proteínas Serina-Treonina Quinases , Proteólise , Fase S , Animais , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Camundongos , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.
Assuntos
Proteína Quinase CDC2/metabolismo , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Proteína Quinase CDC2/genética , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Assuntos
Cucumis sativus , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Haplótipos/genética , FenótipoRESUMO
An Amendment to this paper has been published and can be accessed via a link at the top of the paper. The original Letter has not been corrected.
RESUMO
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, have profoundly affected human health. Booster COVID-19 vaccines have demonstrated significant efficacy in reducing infection and severe cases. However, the effects of booster COVID-19 vaccines on key immune cell subsets and their responses in rheumatoid arthritis (RA) are not well understood. By using single-cell RNA sequencing (scRNA-seq) combined with scTCR/BCR-seq analysis, a total of 8 major and 27 minor cell clusters were identified from paired peripheral blood mononuclear cells (PBMCs) which were collected 1 week before and 4 weeks after booster vaccination in stable RA patients. Booster vaccination only had limited impact on the composition and proportions of PBMCs cell clusters. CD8+ cytotoxic T cells (CD8+T_CTL) showed a trend toward an increase after vaccination, while naive B cells and conventional dendritic cells (cDCs) showed a trend toward a decrease. Transcriptomic changes were observed after booster vaccination, primarily involving T/B cell receptor signaling pathways, phagosome, antigen processing and presenting, and viral myocarditis pathways. Interferon (IFN) and pro-inflammatory response gene sets were slightly upregulated across most major cell subpopulations in COVID-19 booster-vaccinated RA individuals. Plasma neutralizing antibody titers significantly increased after booster COVID-19 vaccination (p = 0.037). Single-cell TCR/BCR analysis revealed increased B cell clone expansion and repertoire diversity postvaccination, with no consistent alterations in T cells. Several clonotypes of BCRs and TCRs were identified to be significantly over-represented after vaccination, such as IGHV3-15 and TRBV28. Our study provided a comprehensive single-cell atlas of the peripheral immune response and TCR/BCR immune repertoire profiles to inactivated SARS-CoV-2 booster vaccination in RA patients, which helps us to understand vaccine-induced immune responses better.
Assuntos
Artrite Reumatoide , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Leucócitos Mononucleares , Receptores de Antígenos de Linfócitos T , Anticorpos Antivirais , VacinaçãoRESUMO
Translation is essential for megakaryocyte (MK) maturation and platelet production. However, how the translational pathways are regulated in this process remains unknown. In this study, we found that MK/platelet-specific lactate dehydrogenase A (LdhA) knockout mice exhibited an increased number of platelets with remarkably accelerated MK maturation and proplatelet formation. Interestingly, the role of LDHA in MK maturation and platelet formation did not depend on lactate content, which was the major product of LDHA. Mechanism studies revealed that LDHA interacted with eukaryotic elongation factor 2 (eEF2) in the cytoplasm, controlling the participation of eEF2 in translation at the ribosome. Furthermore, the interaction of LDHA and eEF2 was dependent on nicotinamide adenine dinucleotide (NADH), a coenzyme of LDHA. NADH-competitive inhibitors of LDHA could release eEF2 from the LDHA pool, upregulate translation, and enhance MK maturation in vitro. Among LDHA inhibitors, stiripentol significantly promoted the production of platelets in vivo under a physiological state and in the immune thrombocytopenia model. Moreover, stiripentol could promote platelet production from human cord blood mononuclear cell-derived MKs and also have a superposed effect with romiplostim. In short, this study shows a novel nonclassical function of LDHA in translation that may serve as a potential target for thrombocytopenia therapy.
Assuntos
Quinase do Fator 2 de Elongação , L-Lactato Desidrogenase , Megacariócitos , Trombocitopenia , Trombopoese , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Quinase do Fator 2 de Elongação/sangue , Quinase do Fator 2 de Elongação/metabolismo , Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , NAD/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Trombocitopenia/sangue , Trombocitopenia/tratamento farmacológico , Trombocitopenia/enzimologia , Trombocitopenia/metabolismo , Trombopoese/fisiologiaRESUMO
Sutetinib is an irreversible inhibitor of epidermal growth factor receptor (EGFR) and showed favorable efficacy and safety in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harbouring nondrug-resistant rare EGFR mutations. To evaluate the potential food effect, eighteen healthy Chinese subjects were enrolled in a single-centre, randomized, open-label, two-sequence, two-period crossover study. Sutetinib was administered as a single oral 100 mg under fasting or fed conditions, and pharmacokinetic sampling was performed following each dose and analysed by a validated liquid chromatography/mass spectrometry method. Safety and tolerability were also evaluated. Food intake slightly decreased maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from time 0 to infinity (AUC0 - inf) of sutetinib (geometric least-squares mean [GLSM] ratio, 80.94% and 86.11%; 90% confidence interval [CI], 68.43-95.72 and 75.88-97.73) and its active metabolite sutetinib N-Oxide (GLSM ratio, 75.58% and 84.00%; 90% CI, 65.69-86.95 and 75.42-93.56), respectively. In addition, the time to maximum plasma concentration (Tmax) of both sutetinib and its metabolite has been prolonged by 2 h under fed conditions. A total of 31 adverse events (AEs) occurred during the study, with no serious adverse events (SAE) reported, and no obvious difference was observed between the fasting and fed groups. Our results demonstrated that a high-fat and high-calorie diet caused a significant delay in drug absorption and a marginal reduction in drug exposure. Sutetinib was generally well tolerated in healthy Chinese subjects. (This trial was registered at http://www.chinadrugtrials.org.cn . The registration No. is CTR20201933, and the date of registration is 2020-10-16).
Assuntos
Povo Asiático , Estudos Cross-Over , Receptores ErbB , Interações Alimento-Droga , Voluntários Saudáveis , Inibidores de Proteínas Quinases , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Cápsulas , População do Leste Asiático , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/sangueRESUMO
BACKGROUND: Studies have shown that the absolute lymphocyte count (ALC) and the neutrophil-to-lymphocyte ratio (NLR) are related to the outcomes in patients with breast cancer receiving specific chemotherapies. However, the reports have focussed on the initial blood test and there is a lack of evidence or data to support that dynamic changes of ALC or NLR are associated with the patients' survival outcomes. METHODS: We retrospectively reviewed electronic medical records from patients with breast cancer treated with eribulin from 2015 to 2019 at our institution. Blood test data were available prior to starting eribulin (baseline), and at 1, 3 and 6 months after initiating eribulin. We classified the patients into ALC and NLR high and low groups using the following cut-offs: 1000/µl for ALC and 3 for NLR. We defined ALC and NLR trends as increasing or decreasing compared with the initial data. We assessed the associations between the ALC and NLR with progression-free survival and overall survival. RESULTS: There were 136 patients with breast cancer treated with eribulin. Of these patients, 60 had complete blood tests and follow-up data. Neither a high ALC nor a low baseline NLR was associated with the survival outcome. One month after initiating eribulin treatment, a high ALC and a low NLR were significantly associated with longer progression-free survival (p = 0.044 for each). Three months after initiating eribulin, a high ALC was significantly associated with better overall survival (p = 0.006). A high NLR at 3 or 6 months after initiating eribulin was associated with worse overall survival (p = 0.017 and p = 0.001, respectively). The ALC and NLR trends across times were not associated with survivals. CONCLUSION: We showed that 1, 3 and 6 months after initiating eribulin, a high ALC and a low NLR may be related to the patients' survival outcomes. The ALC and NLR trends were not associated with survival. Accordingly, we believe patients who maintain a high ALC and a low NLR may have better clinical outcomes after initiating eribulin.
Assuntos
Neoplasias da Mama , Furanos , Cetonas , Policetídeos de Poliéter , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neutrófilos , Estudos Retrospectivos , Linfócitos , Contagem de LinfócitosRESUMO
OBJECTIVES: The performance of the new Respiratory Pathogen panel (fluorescent probe melting curve, FPMC) for the qualitative detection of 12 organisms (chlamydia pneumoniae, mycoplasma pneumoniae, adenovirus, influenza A virus, influenza B virus, parainfluenza virus, rhinovirus, etc.) was assessed. METHODS: Prospectively collected nasopharyngeal swab (NPS) and sputum specimens (n = 635) were detected by using the FPMC panel, with the Sanger sequencing method as the comparative method. RESULTS: The overall percent concordance between the FPMC analysis method and the Sanger sequencing method was 100% and 99.66% for NPS and sputum specimens, respectively. The FPMC testified an overall positive percent concordance of 100% for both NPS and sputum specimens. The FPMC analysis method also testified an overall negative percent concordance of 100% and 99.38% for NPS and sputum specimens, respectively. CONCLUSIONS: The FPMC analysis method is a stable and accurate assay for rapid, comprehensive detecting for respiratory pathogens.
Assuntos
Técnicas de Diagnóstico Molecular , Nasofaringe , Infecções Respiratórias , Escarro , Humanos , Escarro/microbiologia , Escarro/virologia , Nasofaringe/virologia , Nasofaringe/microbiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Vírus/isolamento & purificação , Vírus/genética , Vírus/classificação , Adulto , Estudos Prospectivos , Pessoa de Meia-Idade , Adolescente , Feminino , Adulto Jovem , Criança , Masculino , Idoso , Pré-Escolar , Lactente , Manejo de Espécimes/métodos , Sensibilidade e Especificidade , Idoso de 80 Anos ou maisRESUMO
Cyclins are regulatory subunits of cyclin-dependent kinases. Cyclin A, the first cyclin ever cloned, is thought to be an essential component of the cell-cycle engine. Mammalian cells encode two A-type cyclins, testis-specific cyclin A1 and ubiquitously expressed cyclin A2. Here, we tested the requirement for cyclin A function using conditional knockout mice lacking both A-type cyclins. We found that acute ablation of cyclin A in fibroblasts did not affect cell proliferation, but led to prolonged expression of another cyclin, cyclin E, across the cell cycle. However, combined ablation of all A- and E-type cyclins extinguished cell division. In contrast, cyclin A function was essential for cell-cycle progression of hematopoietic and embryonic stem cells. Expression of cyclin A is particularly high in these compartments, which might render stem cells dependent on cyclin A, whereas in fibroblasts cyclins A and E play redundant roles in cell proliferation.
Assuntos
Ciclina A/metabolismo , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Ciclina A/genética , Ciclina E/genética , Ciclina E/metabolismo , Camundongos , Camundongos KnockoutRESUMO
OBJECTIVE: To evaluate the effects of our self-developed endotracheal tube fixation device in mechanically ventilated patients. METHODS: In a dual-centre randomised controlled trial, patients who were expected to require mechanical ventilation for over 48 h were assigned to the observation group (using self-developed device) or the control group (using the traditional device). The primary endpoint was the incidence of endotracheal intubation-related pressure injury (EIRPI). RESULTS: Fifty-one patients in the observation group and 54 patients in the control group were analysed. The incidence of EIRPI was 7.8% in the observation group and 33.3% in the control group (p = 0.001). Lip pressure injury (PI) occurred in 0 versus 14 (25.9%) patients in the observation versus control groups (p < 0.001). Both oral-mucosal and facial PIs were similar between the two groups. CONCLUSIONS: The use of the novel device reduced the incidence of EIRPI, especially lip PI. Trial registration Chinese Clinical Trial Registry ChiCTR2300078132. Registered on 29 November 2023.
Assuntos
Úlcera por Pressão , Humanos , Intubação Intratraqueal/efeitos adversos , Respiração ArtificialRESUMO
Treatments that target immune checkpoints, such as the one mediated by programmed cell death protein 1 (PD-1) and its ligand PD-L1, have been approved for treating human cancers with durable clinical benefit. However, many patients with cancer fail to respond to compounds that target the PD-1 and PD-L1 interaction, and the underlying mechanism(s) is not well understood. Recent studies revealed that response to PD-1-PD-L1 blockade might correlate with PD-L1 expression levels in tumour cells. Hence, it is important to understand the mechanistic pathways that control PD-L1 protein expression and stability, which can offer a molecular basis to improve the clinical response rate and efficacy of PD-1-PD-L1 blockade in patients with cancer. Here we show that PD-L1 protein abundance is regulated by cyclin D-CDK4 and the cullin 3-SPOP E3 ligase via proteasome-mediated degradation. Inhibition of CDK4 and CDK6 (hereafter CDK4/6) in vivo increases PD-L1 protein levels by impeding cyclin D-CDK4-mediated phosphorylation of speckle-type POZ protein (SPOP) and thereby promoting SPOP degradation by the anaphase-promoting complex activator FZR1. Loss-of-function mutations in SPOP compromise ubiquitination-mediated PD-L1 degradation, leading to increased PD-L1 levels and reduced numbers of tumour-infiltrating lymphocytes in mouse tumours and in primary human prostate cancer specimens. Notably, combining CDK4/6 inhibitor treatment with anti-PD-1 immunotherapy enhances tumour regression and markedly improves overall survival rates in mouse tumour models. Our study uncovers a novel molecular mechanism for regulating PD-L1 protein stability by a cell cycle kinase and reveals the potential for using combination treatment with CDK4/6 inhibitors and PD-1-PD-L1 immune checkpoint blockade to enhance therapeutic efficacy for human cancers.
Assuntos
Antígeno B7-H1/metabolismo , Proteínas Culina/metabolismo , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Vigilância Imunológica , Neoplasias/imunologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Evasão Tumoral/imunologia , Proteínas 14-3-3/metabolismo , Animais , Antígeno B7-H1/biossíntese , Proteínas Cdh1/metabolismo , Ciclo Celular , Linhagem Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Proteínas Nucleares/química , Fosforilação , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias da Próstata/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Repressoras/químicaRESUMO
Adjuvants for vaccines with characteristics of improving adaptive immunity particularly via leverage of antigen presenting cells (APCs) are currently lacking. In a previous work we obtained a new soluble 300 kDa homogeneous ß-glucan named GFPBW1 from the fruit bodies of Granola frondosa. GFPBW1 could activate macrophages by targeting dendritic cell associated C-type lectin 1 (Dectin-1)/Syk/NF-κB signaling to achieve antitumour effects. In this study the adjuvant effects of GFPBW1 were explored with OVA-antigen and B16-OVA tumor model. We showed that GFPBW1 (5, 50, 500 µg/mL) dose-dependently promoted activation and maturation of APCs in vitro by increasing CD80, CD86 and MHC II expression. We immunized female mice with OVA in combination with GFPBW1 (50 or 300 µg) twice with an interval of two weeks. GFPBW1 markedly and dose-dependently increased OVA-specific antibody titers of different subtypes including IgG1, IgG2a, IgG2b and IgG3, suggesting that it could serve as an adjuvant for both Th1 and Th2 type immune responses. Furthermore, GFPBW1 in combination with aluminum significantly increased the titers of OVA-specific IgG2a and IgG2b, but not those of IgG1, suggesting that GFPBW1 could be used as a co-adjuvant of aluminum to compensate for Th1 deficiency. For mice immunized with OVA plus GFPBW1, no obvious pathological injury was observed in either major organs or injection sites, and no abnormalities were noted for any of the hematological parameters. When GFPBW1 served as an adjuvant in the B16-OVA cancer vaccine models, it could accomplish entire tumor suppression with preventive vaccines, and enhance antitumour efficacy with therapeutic vaccines. Differentially expressed genes were found to be enriched in antigen processing process, specifically increased tumor infiltration of DCs, B1 cells and plasma cells in the OVA plus GFPBW1 group, in accordance with its activation and maturation function of APCs. Collectively, this study systematically describes the properties of GFPBW1 as a novel potent and safe adjuvant and highlights its great potential in vaccine development.
Assuntos
Células Apresentadoras de Antígenos , Grifola , Camundongos Endogâmicos C57BL , Ovalbumina , beta-Glucanas , Animais , Feminino , Grifola/química , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Camundongos , beta-Glucanas/farmacologia , beta-Glucanas/imunologia , Ovalbumina/imunologia , Adjuvantes de Vacinas , Adjuvantes Imunológicos/farmacologia , Melanoma Experimental/imunologiaRESUMO
OBJECTIVE: Continuous passive pressure suction and APG gel therapy effect diabetic foot IL-6, CRP, wound healing, and hospitalization. METHODS: Clinicopathological data from 102 diabetic foot ulcer patients treated at our institution between March 2018 and May 2022 was examined. Tables generated 51 joint and controlling teams randomly. The observation team received passive pressure suction and APG gel whereas the controlled team received conventional treatment. Teams monitored therapy outcomes, adverse responses, wound healing, hospital stay, and costs. Both teams compared blood uric acid, cystatin C, homocysteine, and serum IL-6, IL-10, and CRP before and after medication. RESULTS: The joint team had higher hospitalization costs, shorter stays, and faster wound healing than the controlled team. Diaparity was significant (P < 0.05). The united team worked 100 %, unlike the controlling team. This difference was significant (P < 0.05). Both teams showed significant decreases in CRP, IL-6, and IL-10 levels after therapy (P < 0.05). After therapy, both the combined and controlled teams had substantial differences in blood CRP, IL-6, and IL-10 levels (P < 0.05). Both teams had significantly decreased uric acid, cystatin C, and homocysteine after treatment. The combined team showed significantly decreased uric acid, cystatin C, homocysteine levels following therapy compared to the control team (P < 0.05). CONCLUSION: The joint team experienced considerably fewer adverse events (3.92 % vs. 17.65 %) than the controls team (P < 0.05). Permanent passive pressure suction and APG gel therapy lower inflammatory response, blood uric acid, cystatin C, and homocysteine, speeding wound healing, reducing side effects.
Assuntos
Proteína C-Reativa , Pé Diabético , Interleucina-6 , Cicatrização , Humanos , Pé Diabético/terapia , Pé Diabético/sangue , Feminino , Masculino , Proteína C-Reativa/metabolismo , Interleucina-6/sangue , Pessoa de Meia-Idade , Tempo de Internação , Idoso , Géis , Tratamento de Ferimentos com Pressão Negativa/métodosRESUMO
The retinoblastoma (Rb) protein exerts its tumor suppressor function primarily by inhibiting the E2F family of transcription factors that govern cell-cycle progression. However, it remains largely elusive whether the hyper-phosphorylated, non-E2F1-interacting form of Rb has any physiological role. Here we report that hyper-phosphorylated Rb directly binds to and suppresses the function of mTORC2 but not mTORC1. Mechanistically, Rb, but not p107 or p130, interacts with Sin1 and blocks the access of Akt to mTORC2, leading to attenuated Akt activation and increased sensitivity to chemotherapeutic drugs. As such, inhibition of Rb phosphorylation by depleting cyclin D or using CDK4/6 inhibitors releases Rb-mediated mTORC2 suppression. This, in turn, leads to elevated Akt activation to confer resistance to chemotherapeutic drugs in Rb-proficient cells, which can be attenuated with Akt inhibitors. Therefore, our work provides a molecular basis for the synergistic usage of CDK4/6 and Akt inhibitors in treating Rb-proficient cancer.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteína do Retinoblastoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Ciclina D/genética , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Ativação Enzimática , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , TransfecçãoRESUMO
Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.
Assuntos
Asma , Cisteína , Humanos , Becaplermina/genética , Becaplermina/metabolismo , Cisteína/genética , Cisteína/metabolismo , Remodelação das Vias Aéreas , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Asma/metabolismo , Fenótipo , Movimento CelularRESUMO
INTRODUCTION: To investigate current practices, changes, and perceptions of rheumatologists regarding GC use in RA patients. METHODS: A cross-sectional survey was conducted using a structured questionnaire between April and August 2023. Rheumatologists from 31 province-level regions of Mainland China were invited to participate. Chi-squared tests were adopted to investigate the differences by sociodemographic characteristics. RESULTS: 1,717 rheumatologists from 598 hospitals completed the survey with a response rate of 92%. Up to 60% of participants expressed currently infrequent initiation of GC co-therapy with csDMARDs (hardly ever 7.0%; occasionally 24.6%; sometimes 29.1%), accompanied by a decline of frequency over time reported in 64.2%. Regarding attitudes towards bridging therapy with GC, 604 (35.2%) participants supported this approach, 468 (27.3%) opposed it, and 645 (37.6%) remained inconclusive. Time to GC discontinuation in context of csDMARDs was commonly reported within 6 months in current practice which has been narrowed over time. Reasons for chronic GC use were mostly reported due to suboptimal disease control, followed by the need of RA complications, and pre-existing comorbidities. After failure of GC cessation, majority of respondents (84.4%) would escalate RA therapy (commonly by addition of JAK inhibitors, TNF inhibitors), which usually or often facilitated the GC cessation. The most frequently reported advantages and weaknesses of GC were rapid and strong efficacy, adverse events, respectively. Regarding long-term low-dose GC use for RA, the percentage of respondents who supported, opposed, or depended on the situation were 15.9%, 17.2%, and 66.9%, respectively. CONCLUSIONS: The current data demonstrate that GC initiation for RA treatment is not as frequent as before and the awareness of GC discontinuation is growing in current practice. Attitudes towards GC co-therapy with csDMARDs vary considerably and long-term low-dose GC use remain situation dependent.
Assuntos
Antirreumáticos , Artrite Reumatoide , Atitude do Pessoal de Saúde , Glucocorticoides , Padrões de Prática Médica , Reumatologistas , Humanos , Artrite Reumatoide/tratamento farmacológico , Estudos Transversais , China , Glucocorticoides/uso terapêutico , Masculino , Reumatologistas/psicologia , Feminino , Padrões de Prática Médica/tendências , Antirreumáticos/uso terapêutico , Pessoa de Meia-Idade , Adulto , Inquéritos e Questionários , Pesquisas sobre Atenção à Saúde , Conhecimentos, Atitudes e Prática em SaúdeRESUMO
Multicomponent reactions (MCRs), as a powerful one-pot combinatorial synthesis tool, have been recently applied to the synthesis of covalent organic frameworks (COFs). Compared with the thermally driven MCRs, the photocatalytic MCR-based COF synthesis has not yet been investigated. Herein, we first report the construction of COFs by a photocatalytic multicomponent reaction. Upon visible-light irradiation, a series of COFs with excellent crystallinity, stability, and permanent porosity are successfully synthesized via photoredox-catalyzed multicomponent Petasis reaction under ambient conditions. Additionally, the obtained Cy-N3-COF exhibits excellent photoactivity and recyclability for the visible-light-driven oxidative hydroxylation of arylboronic acids. The concept of photocatalytic multicomponent polymerization not only enriches the methodology for COF synthesis but also opens a new avenue for the construction of COFs that might not be possible with the existing synthetic methods based on thermally driven MCRs.
RESUMO
Ouabain is a cardiac glycoside long studied for treating heart diseases, but the attempts to evaluate its anti-psoriatic activity have not been reported. We aimed to explore the effects of ouabain on proliferation and metabolism towards psoriatic keratinocytes. In human HaCaT keratinocytes, ouabain potently decreased viability, promoted apoptosis and caused G2/M cycle arrest. Metabolomics analysis indicated that ouabain markedly impaired glutathione metabolism. The solute carrier family 7 member 11 (SLC7A11) is an amino acid transporter highly specific to cysteine, which is critical for glutathione synthesis. Ouabain downregulated SLC7A11, reduced cysteine uptake and subsequently inhibited glutathione synthesis, probably through inhibiting Akt/mTOR/beclin axis that regulate protein activity of SLC7A11. The impaired glutathione synthesis and oxidative stress caused by ouabain may contribute to its cytotoxicity towards psoriatic keratinocytes. Our results provide experimental evidence supporting further study of ouabain as a potential anti-psoriatic agent.
Assuntos
Antineoplásicos , Psoríase , Humanos , Ouabaína/farmacologia , Ouabaína/metabolismo , Ouabaína/uso terapêutico , Cisteína/metabolismo , Cisteína/farmacologia , Cisteína/uso terapêutico , Queratinócitos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Glutationa/metabolismo , Psoríase/tratamento farmacológico , Psoríase/genética , Proliferação de CélulasRESUMO
BACKGROUND: Parkinson's disease (PD), characterized by the progressive loss of dopaminergic neurons in the substantia nigra and striatum of brain, seriously threatens human health, and is still lack of effective treatment. Dysregulation of N6-methyladenosine (m6A) modification has been implicated in PD pathogenesis. However, how m6A modification regulates dopaminergic neuronal death in PD remains elusive. Mesenchymal stem cell-derived exosomes (MSC-Exo) have been shown to be effective for treating central nervous disorders. We thus propose that the m6A demethylase FTO-targeted siRNAs (si-FTO) may be encapsulated in MSC-Exo (Exo-siFTO) as a synergistic therapy against dopaminergic neuronal death in PD. METHODS: In this study, the effect of m6A demethylase FTO on dopaminergic neuronal death was evaluated both in vivo and in vitro using a MPTP-treated mice model and a MPP + -induced MN9D cellular model, respectively. The mechanism through which FTO influences dopaminergic neuronal death in PD was investigated with qRT-PCR, western blot, immumohistochemical staining, immunofluorescent staining and flow cytometry. The therapeutic roles of MSC-Exo containing si-FTO were examined in PD models in vivo and in vitro. RESULTS: The total m6A level was significantly decreased and FTO expression was increased in PD models in vivo and in vitro. FTO was found to promote the expression of cellular death-related factor ataxia telangiectasia mutated (ATM) via m6A-dependent stabilization of ATM mRNA in dopaminergic neurons. Knockdown of FTO by si-FTO concomitantly suppressed upregulation of α-Synuclein (α-Syn) and downregulation of tyrosine hydroxylase (TH), and alleviated neuronal death in PD models. Moreover, MSC-Exo were utilized to successfully deliver si-FTO to the striatum of animal brain, resulting in the significant suppression of α-Syn expression and dopaminergic neuronal death, and recovery of TH expression in the brain of PD mice. CONCLUSIONS: MSC-Exo delivery of si-FTO synergistically alleviates dopaminergic neuronal death in PD via m6A-dependent regulation of ATM mRNA.