Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech Eng ; 144(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802061

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death in the developed world. CVD can include atherosclerosis, aneurysm, dissection, or occlusion of the main arteries. Many CVDs are caused by unhealthy hemodynamics. Some CVDs can be treated with the implantation of stents and stent grafts. Investigations have been carried out to understand the effects of stents and stent grafts have on arteries and the hemodynamic changes post-treatment. Numerous studies on stent hemodynamics have been carried out using computational fluid dynamics (CFD) which has yielded significant insight into the effect of stent mesh design on near-wall blood flow and improving hemodynamics. Particle image velocimetry (PIV) has also been used to capture behavior of fluids that mimic physiological hemodynamics. However, PIV studies have largely been restricted to unstented models or intra-aneurysmal flow rather than peri or distal stent flow behaviors. PIV has been used both as a standalone measurement method and as a comparison to validate the CFD studies. This article reviews the successes and limitations of CFD and PIV-based modeling methods used to investigate the hemodynamic effects of stents. The review includes an overview of physiology and relevant mechanics of arteries as well as consideration of boundary conditions and the working fluids used to simulate blood for each modeling method along with the benefits and limitations introduced.


Assuntos
Aterosclerose , Aneurisma Intracraniano , Artérias , Simulação por Computador , Hemodinâmica/fisiologia , Humanos , Modelos Cardiovasculares , Stents
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3963-3966, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086118

RESUMO

Glaucoma is the leading cause of irreversible blindness worldwide. Currently, the only treatable risk factor for glaucoma is elevated intraocular pressure (IOP). Glaucoma is commonly caused due to a decreased permeability of the trabecular meshwork, a porous structure at the eye outlet. This prevents the effective outflow of aqueous humour, increasing IOP. This study aims to simulate both normal and glaucomatous conditions of aqueous humour flow in the eye via computational fluid dynamics (CFD). Using clinical data, an idealised geometrical model of the eye was created. Darcy's law was employed to calculate the permeability values for various IOPs, which was then applied to the CFD model. Subsequently, verifiable and validated models for a normal and glaucomatous eye were achieved. Clinical Relevance- Glaucoma surgical treatments are often met with post-operative complications due to an insufficient or even excessive outflow of aqueous humour. The resulting glaucomatous eye model from this study can be used to test how different glaucoma filtration surgeries affect the efficacy of aqueous humour outflow. In turn, the most effective glaucoma surgical procedure may be identified for specific eye geometries according to race, age, gender, etc.


Assuntos
Humor Aquoso , Glaucoma , Glaucoma/diagnóstico , Glaucoma/cirurgia , Humanos , Hidrodinâmica , Pressão Intraocular , Malha Trabecular
3.
Med Eng Phys ; 96: 81-90, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34565556

RESUMO

The aorta is a high risk region for cardiovascular disease (CVD). Haemodynamic patterns leading to CVD are not well established despite numerous experimental and numerical studies. Most overlook effects of arterial compliance and pulsatile flow. However, rigid wall assumptions can lead to overestimation of wall shear stress; a key CVD determinant. This work investigates the effect of compliance on aortic arch haemodynamics experiencing pulsatility. Rigid and compliant phantoms of the arch and brachiocephalic branch (BCA) were manufactured. Stereoscopic particle image velocimetry was used to observe velocity fields. Higher velocity magnitude was observed in the rigid BCA during acceleration. However, during deceleration, the compliant phantom experienced higher velocity. During deceleration, a low velocity region initiated and increased in size in the BCA of both phantoms with irregular shape in the compliant. At mid-deceleration, considerably larger recirculation was observed under compliance compared to rigid. Another recirculation region formed and increased in size on the inner wall of the arch in the compliant during late deceleration, but not rigid. The recirculation regions witnessed identify as high risk areas for atherosclerosis formation by a previous ex-vivo study. The results demonstrate necessity of compliance and pulsatility in haemodynamic studies to obtain highly relevant clinical outcomes.


Assuntos
Aorta Torácica , Aorta , Aorta Torácica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Modelos Cardiovasculares , Imagens de Fantasmas , Fluxo Pulsátil , Reologia
4.
Respir Physiol Neurobiol ; 254: 23-29, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29635072

RESUMO

AIM: The goal of this paper is to quantify upper airway resistance with and without nasal high flow (NHF) therapy. For adults, NHF therapy feeds 30-60 L/min of warm humidified air into the nose through short cannulas which do not seal the nostril. NHF therapy has been reported to increase airway pressure, increase tidal volume (Vt) and decrease respiratory rate (RR), but it is unclear how these findings affect the work done to overcome airway resistance to air flow during expiration. Also, there is little information on how the choice of nasal cannula size may affect work of breathing. In this paper, estimates of airway resistance without and with different NHF flow (applied via different cannula sizes) were made. The breathing efforts required to overcome airway resistance under these conditions were quantified. METHOD: NHF was applied via three different cannula sizes to a 3-D printed human upper airway. Pressure drop and flow rate were measured and used to estimate inspiratory and expiratory upper airway resistances. The resistance information was used to compute the muscular work required to overcome the resistance of the upper airway to flow. RESULTS: NHF raises expiratory resistance relative to spontaneous breathing if the breathing pattern does not change but reduces work of breathing if peak expiratory flow falls. Of the cannula sizes used, the large cannula produced the greatest resistance and the small cannula produced the least. The work required to cause tracheal flow through the upper airway was reduced if the RR and minute volume are reduced by NHF. NHF has been observed to do so in COPD patients (Bräunlich et al., 2013). A reduction in I:E ratio due to therapy was found to reduce work of breathing if the peak inspiratory flow is less than the flow below which no inspiratory effort is required to overcome upper airway resistance. CONCLUSION: NHF raises expiratory resistance but it can reduce the work required to overcome upper airway resistance via a fall in inspiratory work of breathing, RR and minute volume.


Assuntos
Modelos Cardiovasculares , Nariz/fisiologia , Respiração , Terapia Respiratória , Traqueia/fisiologia , Adulto , Ar , Cânula , Humanos , Masculino , Modelos Anatômicos , Nariz/anatomia & histologia , Nariz/diagnóstico por imagem , Pressão , Impressão Tridimensional , Terapia Respiratória/instrumentação , Traqueia/anatomia & histologia , Traqueia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA