RESUMO
Encoding Archimedean and non-regular tessellations in self-assembled colloidal crystals promises unprecedented structure-dependent properties for applications ranging from low-friction coatings to optoelectronic metamaterials1-7. Yet, despite numerous computational studies predicting exotic structures even from simple interparticle interactions8-12, the realization of complex non-hexagonal crystals remains experimentally challenging13-18. Here we show that two hexagonally packed monolayers of identical spherical soft microparticles adsorbed at a liquid-liquid interface can assemble into a vast array of two-dimensional micropatterns, provided that they are immobilized onto a solid substrate one after the other. The first monolayer retains its lowest-energy hexagonal structure and acts as a template onto which the particles of the second monolayer are forced to rearrange. The frustration between the two lattices elicits symmetries that would not otherwise emerge if all the particles were assembled in a single step. Simply by varying the packing fraction of the two monolayers, we obtain not only low-coordinated structures such as rectangular and honeycomb lattices, but also rhomboidal, hexagonal and herringbone superlattices encoding non-regular tessellations. This is achieved without directional bonding, and the structures formed are equilibrium structures: molecular dynamics simulations show that these structures are thermodynamically stable and develop from short-range repulsive interactions, making them easy to predict, and thus suggesting avenues towards the rational design of complex micropatterns.
RESUMO
When materials freeze, they often undergo damage due to ice growth. Although this damage is commonly ascribed to the volumetric expansion of water upon freezing, it is usually driven by the flow of water toward growing ice crystals that feeds their growth. The freezing of this additional water can cause a large buildup of stress. Here, we demonstrate a technique for characterizing this stress buildup with unprecedented spatial resolution. We create a stable ice-water interface in a controlled temperature gradient and measure the deformation of the confining boundary. Analysis of the deformation field reveals stresses applied to the boundary with [Formula: see text](micrometers) spatial resolution. Globally, stresses increase steadily over time as liquid water is transported to more deeply undercooled regions. Locally, stresses increase until ice growth is stalled by the confining stresses. Importantly, we find a strong localization of stresses, which significantly increases the likelihood of damage caused by the presence of ice, even in apparently benign freezing situations. Ultimately, the limiting stress that the ice exerts is proportional to the local undercooling, in accordance with the Clapeyron equation, which describes the equilibrium between a stressed solid and its melt. Our results are closely connected to the condensation pressure during liquid-liquid phase separation and the crystallization pressure for growing crystals. Thus, they are highly relevant in fields ranging from cryopreservation and frost heave to food science, rock weathering, and art conservation.
RESUMO
Damage caused by freezing wet, porous materials is a widespread problem but is hard to predict or control. Here, we show that polycrystallinity significantly speeds up the stress buildup process that underpins this damage. Unfrozen water in grain-boundary grooves feeds ice growth at temperatures below the freezing temperature, leading to fast stress buildup. These stresses can build up to levels that can easily break many brittle materials. The dynamics of the process are very variable, which we ascribe to local differences in ice-grain orientation and to the surprising mobility of many grooves-which further accelerates stress buildup. Our Letter will help understand how freezing damage occurs and in developing accurate models and effective damage-mitigation strategies.
RESUMO
It is widely known that freezing breaks soft, wet materials. However, the mechanism underlying this damage is still not clear. To understand this process, we freeze model, brittle hydrogel samples, while observing the growth of ice-filled cracks that break these apart. We show that damage is not caused by the expansion of water upon freezing or the growth of ice-filled cavities in the hydrogel that exert pressure on the surrounding material. Instead, local ice growth dehydrates the adjacent hydrogel, leading to drying-induced fracture. This dehydration is driven by the process of cryosuction, whereby undercooled ice sucks nearby water toward itself, feeding ice growth. Our results highlight the strong analogy between freezing damage and desiccation cracking, which we anticipate being useful for developing an understanding of both topics. Our results should also give useful insights into a wide range of freezing processes, including cryopreservation, food science, and frost heave.