RESUMO
BACKGROUND: Wrasses represent the second largest family of marine fishes and display a high diversity of complex colours linked to ecological functions. Recently, red autofluorescent body colouration has been reported in some of these fishes. However, little is known about the distribution of such fluorescent body patterns in wrasses or the animals' ability to perceive such colours. RESULTS: Against this background, we (1) investigated long-wavelength emission autofluorescence in thirteen species of pseudocheilinid wrasses and (2) characterised the spectral absorbance of visual pigments in one of the examined species, the fairy wrasse Cirrhilabrus solorensis. Spectrophotometric analysis revealed that fluorescent body colouration is widespread and diverse within this clade, with considerable variation in both fluorescent pattern and maximum emission wavelength between species. Characterisation of visual pigments in retinal photoreceptors showed a single class of rod and three spectrally distinct cone photoreceptors, suggesting possible trichromacy. CONCLUSION: Combining the emission characteristics of fluorescence body colouration and the spectral sensitivity data of retinal cells suggests that the visual system of C. solorensis is sensitive to pseudocheilinid fluorescence.
RESUMO
Fluorescence enables the display of wavelengths that are absent in the natural environment, offering the potential to generate conspicuous colour contrasts. The marine fairy wrasse Cirrhilabrus solorensis displays prominent fluorescence in the deep red range (650-700 nm). This is remarkable because marine fishes are generally assumed to have poor sensitivity in this part of the visual spectrum. Here, we investigated whether C. solorensis males can perceive the fluorescence featured in this species by testing whether the presence or absence of red fluorescence affects male-male interactions under exclusive blue illumination. Given that males respond aggressively towards mirror-image stimuli, we quantified agonistic behaviour against mirrors covered with filters that did or did not absorb long (i.e. red) wavelengths. Males showed significantly fewer agonistic responses when their fluorescent signal was masked, independent of brightness differences. Our results unequivocally show that C. solorensis can see its deep red fluorescent coloration and that this pattern affects male-male interactions. This is the first study to demonstrate that deep red fluorescent body coloration can be perceived and has behavioural significance in a reef fish.
Assuntos
Comportamento Agonístico , Cor , Perciformes/fisiologia , Percepção Visual , Animais , Fluorescência , Masculino , PigmentaçãoRESUMO
Why do some marine fishes exhibit striking patterns of natural red fluorescence? In this study, we contrast two non-exclusive hypotheses: (i) that UV absorption by fluorescent pigments offers significant photoprotection in shallow water, where UV irradiance is strongest; and (ii) that red fluorescence enhances visual contrast at depths below -10 m, where most light in the 'red' 600-700 nm range has been absorbed. Whereas the photoprotection hypothesis predicts fluorescence to be stronger near the surface and weaker in deeper water, the visual contrast hypothesis predicts the opposite. We used fluorometry to measure red fluorescence brightness in vivo in individuals belonging to eight common small reef fish species with conspicuously red fluorescent eyes. Fluorescence was significantly brighter in specimens from the -20 m sites than in those from -5 m sites in six out of eight species. No difference was found in the remaining two. Our results support the visual contrast hypothesis. We discuss the possible roles fluorescence may play in fish visual ecology and highlight the possibility that fluorescent light emission from the eyes in particular may be used to detect cryptic prey.
Assuntos
Peixes/fisiologia , Fluorescência , Percepção Visual/fisiologia , Animais , Cor de Olho , Fluorometria , Oceanos e Mares , Pigmentação/fisiologia , Raios Ultravioleta/efeitos adversosRESUMO
BACKGROUND: Mating plugs that males place onto the female genital tract are generally assumed to prevent remating with other males. Mating plugs are usually explained as a consequence of male-male competition in multiply mating species. Here, we investigated whether mating plugs also have collateral effects on female fitness. These effects are negative when plugging reduces female mating rate below an optimum. However, plugging may also be positive when plugging prevents excessive forced mating and keeps mating rate closer to a females' optimum. Here, we studied these consequences in the gonochoristic nematode Caenorhabditis remanei. We employed a new CO2-sedation technique to interrupt matings before or after the production of a plug. We then measured mating rate, attractiveness and offspring number. RESULTS: The presence of a mating plug did not affect mating rate or attractiveness to roving males. Instead, females with mating plugs produced more offspring than females without copulatory plugs. CONCLUSIONS: Our experiment suggests that plugging might have evolved under male-male competition but represents a poor protection against competing males in our experiment. Even if plugging does not reduce mating rate, our results indicate that females may benefit from being plugged in a different sense than remating prevention.
RESUMO
Recent progress in remote sensing provides much-needed, large-scale spatio-temporal information on habitat structures important for biodiversity conservation. Here we examine the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the biodiversity of twelve taxa across five temperate forest regions in central Europe. We show that the sensitivity of radar to habitat structure is similar to that of airborne laser scanning (ALS), the current gold standard in the measurement of forest structure. Our models of different facets of biodiversity reveal that radar performs as well as ALS; median R² over twelve taxa by ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling axes representing assemblage composition. We further demonstrate the promising predictive ability of radar-derived data with external validation based on the species composition of birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote sensing will require the coupling of radar data to stratified and standardized collected local species data.
Assuntos
Biodiversidade , Florestas , Radar , Tecnologia de Sensoriamento Remoto/métodos , Árvores/fisiologia , Animais , Aves/classificação , Aves/fisiologia , Besouros/classificação , Besouros/fisiologia , Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Reprodutibilidade dos Testes , Análise Espaço-Temporal , Árvores/classificaçãoRESUMO
Traumatic mating behaviors often bear signatures of sexual conflict and are then typically considered a male strategy to circumvent female choice mechanisms. In an extravagant mating ritual, the hermaphroditic sea slug Siphopteron quadrispinosum pierces the integument of their mating partners with a syringe-like penile stylet that injects prostate fluids. Traumatic injection is followed by the insertion of a spiny penis into the partner's gonopore to transfer sperm. Despite traumatic mating, field mating rates exceed those required for female fertilization insurance, possibly because costs imposed on females are balanced by direct or indirect benefits of multiple sperm receipt. To test this idea, we exposed animals to a relevant range of mating opportunity regimes and assessed the effects on mating behavior and proxies of female fitness. We find penis intromission duration to decrease with mating rates, and a female fecundity maximum at intermediate mating rates. The latter finding indicates that benefits beyond fertilization insurance can make higher mating rates also beneficial from a female perspective in this traumatically mating species.