Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Annu Rev Cell Dev Biol ; 35: 337-356, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30883216

RESUMO

B cells play multiple important roles in the pathophysiology of autoimmune disease. Beyond producing pathogenic autoantibodies, B cells can act as antigen-presenting cells and producers of cytokines, including both proinflammatory and anti-inflammatory cytokines. Here we review our current understanding of the non-antibody-secreting roles that B cells may play during development of autoimmunity, as learned primarily from reductionist preclinical models. Attention is also given to concepts emerging from clinical studies using B cell depletion therapy, which shed light on the roles of these mechanisms in human autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Subpopulações de Linfócitos B/imunologia , Animais , Doenças Autoimunes/patologia , Autoimunidade , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Inflamação/imunologia
2.
J Immunol ; 212(7): 1150-1160, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353615

RESUMO

The role of T cell help in autoantibody responses is not well understood. Because tolerance mechanisms govern both T and B cell responses, one might predict that both T cell tolerance and B cell tolerance must be defeated in autoantibody responses requiring T cell help. To define whether autoreactive B cells depend on T cells to generate autoantibody responses, we studied the role of T cells in murine autoantibody responses resulting from acute B cell-specific deletion of regulatory phosphatases. Ars/A1 B cells are DNA reactive and require continuous inhibitory signaling by the tyrosine phosphatase SHP-1 and the inositol phosphatases SHIP-1 and PTEN to maintain unresponsiveness. Acute B cell-restricted deletion of any of these phosphatases results in an autoantibody response. In this study, we show that CD40-CD40L interactions are required to support autoantibody responses of B cells whose anergy has been compromised. If the B cell-intrinsic driver of loss of tolerance is failed negative regulation of PI3K signaling, bystander T cells provide sufficient CD40-mediated signal 2 to support an autoantibody response. However, although autoantibody responses driven by acute B cell-targeted deletion of SHP-1 also require T cells, bystander T cell help does not suffice. These results demonstrate that upregulation of PI3K signaling in autoreactive B cells, recapitulating the effect of multiple autoimmunity risk alleles, promotes autoantibody responses both by increasing B cells' cooperation with noncognate T cell help and by altering BCR signaling. Receptiveness to bystander T cell help enables autoreactive B cells to circumvent the fail-safe of T cell tolerance.


Assuntos
Fosfatidilinositol 3-Quinases , Linfócitos T , Camundongos , Animais , Regulação para Baixo , Linfócitos B , Autoanticorpos , Receptores de Antígenos de Linfócitos B
3.
Immunol Rev ; 307(1): 27-42, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128676

RESUMO

At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.


Assuntos
Doenças Autoimunes , Receptores de Antígenos de Linfócitos B , Autoimunidade , Linfócitos B , Humanos , Tolerância Imunológica , Transdução de Sinais
4.
J Immunol ; 208(7): 1566-1584, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321883

RESUMO

The BCR comprises a membrane-bound Ig that is noncovalently associated with a heterodimer of CD79A and CD79B. While the BCR Ig component functions to sense extracellular Ag, CD79 subunits contain cytoplasmic ITAMs that mediate intracellular propagation of BCR signals critical for B cell development, survival, and Ag-induced activation. CD79 is therefore an attractive target for Ab and chimeric Ag receptor T cell therapies for autoimmunity and B cell neoplasia. Although the mouse is an attractive model for preclinical testing, due to its well-defined immune system, an obstacle is the lack of cross-reactivity of candidate therapeutic anti-human mAbs with mouse CD79. To overcome this problem, we generated knockin mice in which the extracellular Ig-like domains of CD79A and CD79B were replaced with human equivalents. In this study, we describe the generation and characterization of mice expressing chimeric CD79 and report studies that demonstrate their utility in preclinical analysis of anti-human CD79 therapy. We demonstrate that human and mouse CD79 extracellular domains are functionally interchangeable, and that anti-human CD79 lacking Fc region effector function does not cause significant B cell depletion, but induces 1) decreased expression of plasma membrane-associated IgM and IgD, 2) uncoupling of BCR-induced tyrosine phosphorylation and calcium mobilization, and 3) increased expression of PTEN, consistent with the levels observed in anergic B cells. Finally, anti-human CD79 treatment prevents disease development in two mouse models of autoimmunity. We also present evidence that anti-human CD79 treatment may inhibit Ab secretion by terminally differentiated plasmablasts and plasma cells in vitro.


Assuntos
Linfócitos B , Ativação Linfocitária , Animais , Anticorpos Monoclonais/uso terapêutico , Anergia Clonal , Modelos Animais de Doenças , Camundongos
5.
J Immunol ; 202(12): 3381-3393, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076529

RESUMO

The inositol lipid phosphatases PTEN and SHIP-1 play a crucial role in maintaining B cell anergy and are reduced in expression in B cells from systemic lupus erythematosus and type 1 diabetes patients, consequent to aberrant regulation by miRNA-7 and 155. With an eye toward eventual use in precision medicine therapeutic approaches in autoimmunity, we explored the ability of p110δ inhibition to compensate for PI3K pathway dysregulation in mouse models of autoimmunity. Low dosages of the p110δ inhibitor idelalisib, which spare the ability to mount an immune response to exogenous immunogens, are able to block the development of autoimmunity driven by compromised PI3K pathway regulation resultant from acutely induced B cell-targeted haploinsufficiency of PTEN and SHIP-1. These conditions do not block autoimmunity driven by B cell loss of the regulatory tyrosine phosphatase SHP-1. Finally, we show that B cells in NOD mice express reduced PTEN, and low-dosage p110δ inhibitor therapy blocks disease progression in this model of type 1 diabetes. These studies may aid in the development of precision treatments that act by enforcing PI3K pathway regulation in patients carrying specific risk alleles.


Assuntos
Linfócitos B/imunologia , Diabetes Mellitus Tipo 1/imunologia , Imunoterapia/métodos , Lúpus Eritematoso Sistêmico/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Animais , Autoimunidade , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Diabetes Mellitus Tipo 1/terapia , Haploinsuficiência , Humanos , Lúpus Eritematoso Sistêmico/terapia , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/genética , Terapia de Alvo Molecular , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Transdução de Sinais
6.
Immunity ; 35(5): 746-56, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22078222

RESUMO

Anergic B cells are characterized by impaired signaling and activation after aggregation of their antigen receptors (BCR). The molecular basis of this impairment is not understood. In studies reported here, Src homology-2 (SH2)-containing inositol 5-phosphatase SHIP-1 and its adaptor Dok-1 were found to be constitutively phosphorylated in anergic B cells, and activation of this inhibitory circuit was dependent on Src-family kinase activity and consequent to biased BCR immunoreceptor tyrosine-based activation motif (ITAM) monophosphorylation. B cell-targeted deletion of SHIP-1 caused severe lupus-like disease. Moreover, absence of SHIP-1 in B cells led to loss of anergy as indicated by restoration of BCR signaling, loss of anergic surface phenotype, and production of autoantibodies. Thus, chronic BCR signals maintain anergy in part via ITAM monophosphorylation-directed activation of an inhibitory signaling circuit involving SHIP-1 and Dok-1.


Assuntos
Linfócitos B/imunologia , Antígenos CD79/metabolismo , Anergia Clonal/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Marcação de Genes , Inositol Polifosfato 5-Fosfatases , Camundongos , Camundongos Transgênicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Fosfoproteínas/metabolismo , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Tirosina/metabolismo , Quinases da Família src/metabolismo
7.
J Immunol ; 201(9): 2641-2653, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282750

RESUMO

Generation of protective immune responses requires coordinated stimulation of innate and adaptive immune responses. An important mediator of innate immunity is stimulator of IFN genes (STING, MPYS, MITA), a ubiquitously but differentially expressed adaptor molecule that functions in the relay of signals initiated by sensing of cytosolic DNA and bacterial cyclic dinucleotides (CDNs). Whereas systemic expression of STING is required for CDN-aided mucosal Ab responses, its function in B cells in particular is unclear. In this study, we show that B cells can be directly activated by CDNs in a STING-dependent manner in vitro and in vivo. Direct activation of B cells by CDNs results in upregulation of costimulatory molecules and cytokine production and this can be accompanied by caspase-dependent cell death. CDN-induced cytokine production by B cells and other cell types also contributes to activation and immune responses. Type I IFN is primarily responsible for this indirect stimulation although other cytokines may contribute. BCR and STING signaling pathways act synergistically to promote Ab responses independent of type I IFN. B cell expression of STING is required for optimal in vivo IgG and mucosal IgA Ab responses induced by T cell-dependent Ags and cyclic-di-GMP but plays no discernable role in Ab responses in which alum is used as an adjuvant. Thus, STING functions autonomously in B cells responding to CDNs, and its activation synergizes with Ag receptor signals to promote B cell activation.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Proteínas de Membrana/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Alarminas/imunologia , Animais , Antígenos de Bactérias/imunologia , Camundongos , Nucleotídeos Cíclicos/imunologia , Transdução de Sinais/imunologia
8.
Immunol Rev ; 268(1): 66-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26497513

RESUMO

Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast cells, promoting immunoglobulin class switching, and preventing excessive activation. Transmembrane signaling associated with these functions is mediated primarily by two amino acid sequence motifs, ITAMs (immunoreceptor tyrosine-based activation motifs) and ITIMs (immunoreceptor tyrosine-based inhibition motifs) that act as the receptors' interface with activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid phosphatases. In this review, we will discuss our current understanding of signaling by these receptors/motifs and their sometimes blurred lines of function.


Assuntos
Motivos de Aminoácidos , Imunoglobulinas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptores Fc/química , Receptores Fc/metabolismo , Transdução de Sinais , Animais , Anti-Inflamatórios , Linfócitos B/imunologia , Linfócitos B/metabolismo , Humanos , Imunoglobulinas/imunologia , Imunoglobulinas Intravenosas/farmacologia , Imunoglobulinas Intravenosas/uso terapêutico , Imunomodulação , Ligantes , Ligação Proteica/imunologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores Fc/genética , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/metabolismo
9.
Diabetologia ; 61(12): 2621-2632, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30255377

RESUMO

AIMS/HYPOTHESIS: Previous studies have demonstrated that high-affinity insulin-binding B cells (IBCs) silenced by anergy in healthy humans lose their anergy in islet autoantibody-positive individuals with recent-onset type 1 diabetes, and in autoantibody-negative first-degree relatives carrying certain risk alleles. Here we explore the hypothesis that IBCs are found in the immune periphery of disease-resistant C57BL/6-H2g7 mice, where, as in healthy humans, they are anergic, but that in disease-prone genetic backgrounds (NOD) they become activated and migrate to the pancreas and pancreatic lymph nodes, where they participate in the development of type 1 diabetes. METHODS: We compared the status of high-affinity IBCs in disease-resistant VH125.C57BL/6-H2g7 and disease-prone VH125.NOD mice. RESULTS: Consistent with findings in healthy humans, high-affinity IBCs reach the periphery in disease-resistant mice and are anergic, as indicated by a reduced expression of membrane IgM, unresponsiveness to antigen and failure to become activated or accumulate in the pancreatic lymph nodes or pancreas. In NOD mice, high-affinity IBCs reach the periphery early in life and increase in number prior to the onset of hyperglycaemia. These cells are not anergic; they become activated, produce autoantibodies and accumulate in the pancreas and pancreatic lymph nodes prior to disease development. CONCLUSIONS/INTERPRETATION: These findings are consistent with genetic determination of the escape of high-affinity IBCs from anergy and their early contribution to the development of type 1 diabetes.


Assuntos
Autoanticorpos/imunologia , Autoimunidade/fisiologia , Linfócitos B/metabolismo , Animais , Autoanticorpos/metabolismo , Autoimunidade/imunologia , Linfócitos B/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
10.
J Immunol ; 196(1): 217-31, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26582947

RESUMO

We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αß T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations.


Assuntos
Linfócitos B/imunologia , Interleucina-4/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Transferência Adotiva , Animais , Anticorpos/sangue , Autoanticorpos/sangue , Fator Ativador de Células B/sangue , Células Cultivadas , Técnicas de Cocultura , Centro Germinativo/imunologia , Imunoglobulina G/sangue , Interleucina-4/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética , Baço/citologia , Subpopulações de Linfócitos T/transplante
11.
Proc Natl Acad Sci U S A ; 112(1): E39-48, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535377

RESUMO

γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αß T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αß T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.


Assuntos
Linfócitos B/imunologia , Tolerância Imunológica , Interleucina-4/biossíntese , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Transferência Adotiva , Animais , Anticorpos/sangue , Autoanticorpos/sangue , Linfócitos B/citologia , Feminino , Centro Germinativo/metabolismo , Imunização , Imunoglobulina E/sangue , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Baço/citologia
12.
J Immunol ; 195(11): 5461-5471, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26500350

RESUMO

Class switch recombination (CSR) generates isotype-switched Abs with distinct effector functions. B cells express phosphatase and tensin homolog (PTEN) and multiple isoforms of class IA PI3K catalytic subunits, including p110α and p110δ, whose roles in CSR remain unknown or controversial. In this article, we demonstrate a direct effect of PTEN on CSR signaling by acute deletion of Pten specifically in mature B cells, thereby excluding the developmental impact of Pten deletion. We show that mature B cell-specific PTEN overexpression enhances CSR. More importantly, we establish a critical role for p110α in CSR. Furthermore, we identify a cooperative role for p110α and p110δ in suppressing CSR. Mechanistically, dysregulation of p110α or PTEN inversely affects activation-induced deaminase expression via modulating AKT activity. Thus, our study reveals that a signaling balance between PTEN and PI3K isoforms is essential to maintain normal CSR.


Assuntos
Linfócitos B/imunologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Switching de Imunoglobulina/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Animais , Células Cultivadas , Citidina Desaminase/biossíntese , Citidina Desaminase/metabolismo , Switching de Imunoglobulina/genética , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
13.
J Immunol ; 193(2): 909-920, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24929000

RESUMO

Signaling through the BCR can drive B cell activation and contribute to B cell differentiation into Ab-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. In this study, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is downregulated in B cells by BCR or TLR signaling through a pathway dependent on PI3K, Btk, IKK2, and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP1) or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling, thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells.


Assuntos
Diferenciação Celular/imunologia , Plasmócitos/imunologia , Proteína Proto-Oncogênica c-ets-1/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Tirosina Quinase da Agamaglobulinemia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Western Blotting , Diferenciação Celular/genética , Linhagem Celular Tumoral , Expressão Gênica/imunologia , Lectinas/deficiência , Lectinas/genética , Lectinas/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/imunologia , Plasmócitos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Tirosina Quinases/imunologia , Proteínas Tirosina Quinases/metabolismo , Proteína Proto-Oncogênica c-ets-1/deficiência , Proteína Proto-Oncogênica c-ets-1/genética , Receptores de Antígenos de Linfócitos B/deficiência , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/deficiência , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Transdução de Sinais/genética , Quinases da Família src/deficiência , Quinases da Família src/genética , Quinases da Família src/imunologia
14.
J Immunol ; 192(4): 1641-50, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24442438

RESUMO

B cells play a major role in the pathogenesis of many autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and type I diabetes mellitus, as indicated by the efficacy of B cell-targeted therapies in these diseases. Therapeutic effects of the most commonly used B cell-targeted therapy, anti-CD20 mAb, are contingent upon long-term depletion of peripheral B cells. In this article, we describe an alternative approach involving the targeting of CD79, the transducer subunit of the B cell AgR. Unlike anti-CD20 mAbs, the protective effects of CD79-targeted mAbs do not require cell depletion; rather, they act by inducing an anergic-like state. Thus, we describe a novel B cell-targeted approach predicated on the induction of B cell anergy.


Assuntos
Doenças Autoimunes/prevenção & controle , Linfócitos B/imunologia , Antígenos CD79/imunologia , Anergia Clonal/imunologia , Animais , Anticorpos Monoclonais/imunologia , Autoimunidade/imunologia , Feminino , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout
15.
J Autoimmun ; 62: 45-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26152931

RESUMO

Many self-reactive B cells exist in the periphery in a rapidly reversible state of unresponsiveness referred to as anergy. Reversibility of anergy indicates that chronically occupied BCR must transduce non-durable regulatory signals that maintain unresponsiveness. Consistent with such a mechanism, studies of immunoglobulin transgenic, as well as naturally occurring polyclonal autoreactive B cells demonstrate activation of the inositol 5-phosphatase SHIP-1 in anergic cells, and low affinity chromatin autoantigen-reactive B cells have been shown to require expression of this phosphatase to maintain anergy. However, it has been reported that anergy of B cells recognizing high affinity soluble antigen may not require SHIP-1, and is instead mediated by upregulation of the inositol 3-phosphatase PTEN. To further explore this apparent difference in mechanism we analyzed the effect of B cell-targeted SHIP-1 deletion on immune tolerance of high affinity anti-HEL B cells in mice expressing soluble HEL (MD4.ML-5). We report that SHIP-1 functions to dampen responses of naïve and low-dose antigen-primed B cells in vitro, and is required for induction of B cell tolerance. Thus, while anergy of B cells reactive with low affinity and likely polyvalent chromatin antigens is maintained by activation of inhibitory signaling circuitry involving SHIP-1, anergy of B cells recognizing soluble self antigen with high affinity also requires increased activity of SHIP-1.


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Anergia Clonal , Monoéster Fosfórico Hidrolases/genética , Proteínas/imunologia , Domínios de Homologia de src/genética , Transferência Adotiva , Animais , Autoimunidade , Tolerância Imunológica/imunologia , Imunoglobulina D/imunologia , Imunoglobulina M/imunologia , Inositol Polifosfato 5-Fosfatases , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/química , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
16.
J Immunol ; 190(6): 2835-43, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23378430

RESUMO

MPYS (also known as STING, MITA, and TMEM173) is a type I IFN stimulator that is essential for host defense against DNA virus infection and appears important in defense against certain bacteria. The in vivo significance and mechanisms by which MPYS mediates host defense against nonviral pathogens are unknown. Using an MPYS-deficient mouse (Tmem173()), we determined that, distinct from the IFNAR(-/-) mice, MPYS deficiency leads to increased bacterial burden in the liver upon Listeria monocytogenes infection. The increase was correlated with the diminished MCP-1 and MCP-3 chemokine production and decreased blood and liver Ly6C(hi) monocyte frequency. We further demonstrate that MPYS-deficient Ly6C(hi) monocytes are intrinsically defective in migration to the liver. Lastly, adoptive transfer of wild-type Ly6C(hi) monocyte into MPYS-deficient mice decreases their liver bacterial burden. Our findings reveal a novel in vivo function of MPYS that is distinct from its role in activating type I IFN production.


Assuntos
Antígenos Ly/biossíntese , Movimento Celular/imunologia , Listeriose/imunologia , Listeriose/patologia , Proteínas de Membrana/fisiologia , Monócitos/imunologia , Animais , Movimento Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Listeriose/genética , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Proteínas de Membrana/deficiência , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/microbiologia , Monócitos/patologia , Baço/imunologia , Baço/microbiologia
17.
J Immunol ; 189(6): 2965-74, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22904300

RESUMO

The majority of the human population becomes infected early in life by the gammaherpesvirus EBV. Some findings suggest that there is an association between EBV infection and the appearance of pathogenic Abs found in lupus. Gammaherpesvirus 68 infection of adult mice (an EBV model) was shown to induce polyclonal B cell activation and hypergammaglobulinemia, as well as increased production of autoantibodies. In this study, we explored the possibility that this breach of tolerance reflects loss of B cell anergy. Our findings show that, although anergic B cells transiently acquire an activated phenotype early during infection, they do not become responsive to autoantigen, as measured by the ability to mobilize Ca2+ following AgR cross-linking or mount Ab responses following immunization. Indeed, naive B cells also acquire an activated phenotype during acute infection but are unable to mount Ab responses to either T cell-dependent or T cell-independent Ags. In acutely infected animals, Ag stimulation leads to upregulation of costimulatory molecules and relocalization of Ag-specific B cells to the B-T cell border; however, these cells do not proliferate or differentiate into Ab-secreting cells. Adoptive-transfer experiments show that the suppressed state is reversible and is dictated by the environment in the infected host. Finally, B cells in infected mice deficient of CD4+ T cells are not suppressed, suggesting a role for CD4+ T cells in enforcing unresponsiveness. Thus, rather than promoting loss of tolerance, gammaherpesvirus 68 infection induces an immunosuppressed state, reminiscent of compensatory anti-inflammatory response syndrome.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Subpopulações de Linfócitos B/imunologia , Anergia Clonal/imunologia , Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Tolerância Imunológica , Doença Aguda , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Subpopulações de Linfócitos B/patologia , Anergia Clonal/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Tolerância Imunológica/genética , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
18.
Proc Natl Acad Sci U S A ; 108(43): E934-42, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21987785

RESUMO

Animals lacking complement factors C1q, C2, C3, or C4 have severely impaired Ab responses, suggesting a major role for the classic pathway. The classic pathway is primarily initiated by antigen-Ab complexes. Therefore, its role for primary Ab responses seems paradoxical because only low amounts of specific Abs are present in naive animals. A possible explanation could be that the classic pathway is initiated by IgM from naive mice, binding with sufficient avidity to the antigen. To test this hypothesis, a knock-in mouse strain, Cµ13, with a point mutation in the gene encoding the third constant domain of the µ-heavy chain was constructed. These mice produce IgM in which proline in position 436 is substituted with serine, a mutation previously shown to abrogate the ability of mouse IgM to activate complement. Unexpectedly, the Ab response to sheep erythrocytes and keyhole limpet hemocyanin in Cµ13 mice was similar to that in WT mice. Thus, although secreted IgM and the classic pathway activation are both required for the normal primary Ab response, this does not require that IgM activate C. This led us to test Ab responses in animals lacking one of three other endogenous activators of the classic pathway: specific intracellular adhesion molecule-grabbing nonintegrin R1, serum amyloid P component, and C-reactive protein. Ab responses were also normal in these animals.


Assuntos
Formação de Anticorpos/imunologia , Via Clássica do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Cadeias mu de Imunoglobulina/imunologia , Animais , Anticorpos Monoclonais/imunologia , Proteína C-Reativa/imunologia , Cromatografia em Agarose , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Técnicas de Introdução de Genes , Cadeias mu de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Mutação de Sentido Incorreto/genética , Reação em Cadeia da Polimerase , Componente Amiloide P Sérico/imunologia
19.
Immunol Rev ; 237(1): 249-63, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20727040

RESUMO

A byproduct of the largely stochastic generation of a diverse B-cell specificity repertoire is production of cells that recognize autoantigens. Indeed, recent studies indicate that more than half of the primary repertoire consists of autoreactive B cells that must be silenced to prevent autoimmunity. While this silencing can occur by multiple mechanisms, it appears that most autoreactive B cells are silenced by anergy, wherein they populate peripheral lymphoid organs and continue to express unoccupied antigen receptors yet are unresponsive to antigen stimulation. Here we review molecular mechanisms that appear operative in maintaining the antigen unresponsiveness of anergic B cells. In addition, we present new data indicating that the failure of anergic B cells to mobilize calcium in response to antigen stimulation is not mediated by inactivation of stromal interacting molecule 1, a critical intermediary in intracellular store depletion-induced calcium influx.


Assuntos
Linfócitos B/imunologia , Anergia Clonal , Animais , Humanos , Ativação Linfocitária , Modelos Imunológicos , Transdução de Sinais
20.
bioRxiv ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38826354

RESUMO

Although the Src family kinase (SFK) Lyn is known to be involved in induction and maintenance of peripheral B cell tolerance, the molecular basis of its action in this context remains unclear. This question has been approached using conventional as well as B cell-targeted knockouts of Lyn, with varied conclusions likely confused by collateral loss of Lyn functions in B cell and myeloid cell development and activation. Here we utilized a system in which Lyn gene deletion is tamoxifen inducible and B cell restricted. This system allows acute elimination of Lyn in B cells without off-target effects. This genetic tool was employed in conjunction with immunoglobulin transgenic mice in which peripheral B cells are autoreactive. DNA reactive Ars/A1 B cells require continuous inhibitory signaling, mediated by the inositol phosphatase SHIP-1 and the tyrosine phosphatase SHP-1, to maintain an unresponsive (anergic) state. Here we show that Ars/A1 B cells require Lyn to establish and maintain B cell unresponsiveness. Lyn primarily functions by restricting PI3K-dependent signaling pathways. This Lyn-dependent mechanism complements the impact of reduced mIgM BCR expression to restrict BCR signaling in Ars/A1 B cells. Our findings suggest that a subset of autoreactive B cells requires Lyn to become anergic and that the autoimmunity associated with dysregulated Lyn function may, in part, be due to an inability of these autoreactive B cells to become tolerized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA