Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioorg Med Chem Lett ; 30(17): 127403, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738972

RESUMO

High-throughput screening methods have been used to identify two novel series of inhibitors that disrupt progranulin binding to sortilin. Exploration of structure-activity relationships (SAR) resulted in compounds with sufficient potency and physicochemical properties to enable co-crystallization with sortilin. These co-crystal structures supported observed SAR trends and provided guidance for additional avenues for designing compounds with additional interactions within the binding site.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Progranulinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Amidas/química , Amidas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Dinâmica Molecular , Progranulinas/antagonistas & inibidores , Ligação Proteica , Pirazóis/química , Pirazóis/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
2.
J Biol Chem ; 285(52): 40604-11, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20943652

RESUMO

We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1. We exploited the antigen-binding property of D5 to select complementary small molecules using a high throughput screen of a diverse chemical collection. The resulting small molecule leads were rendered immunogenic by linking them to a carrier protein and were shown to elicit N-heptad repeat-binding antibodies in a fraction of immunized mice. Plasma from HIV-1-infected subjects shown previously to contain broadly neutralizing antibodies was found to contain antibodies capable of binding to haptens represented in the benzylpiperidine leads identified as a result of the high throughput screen, further validating these molecules as vaccine leads. Our results suggest a new paradigm for vaccine discovery using a medicinal chemistry approach to identify lead molecules that, when optimized, could become vaccine candidates for infectious diseases that have been refractory to conventional vaccine development.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Peptidomiméticos/imunologia , Vacinas contra a AIDS/farmacologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Infecções por HIV/sangue , Infecções por HIV/prevenção & controle , Haptenos/imunologia , Haptenos/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptidomiméticos/farmacologia
3.
J Nucl Med ; 58(11): 1852-1857, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28588151

RESUMO

Programmed death ligand 1 (PD-L1) is an immune regulatory ligand that binds to the T-cell immune check point programmed death 1. Tumor expression of PD-L1 is correlated with immune suppression and poor prognosis. It is also correlated with therapeutic efficacy of programmed death 1 and PD-L1 inhibitors. In vivo imaging may enable real-time follow-up of changing PD-L1 expression and heterogeneity evaluation of PD-L1 expression across tumors in the same subject. We have radiolabeled the PD-L1-binding Affibody molecule NOTA-ZPD-L1_1 with 18F and evaluated its in vitro and in vivo binding affinity, targeting, and specificity. Methods: The affinity of the PD-L1-binding Affibody ligand ZPD-L1_1 was evaluated by surface plasmon resonance. Labeling was accomplished by maleimide coupling of NOTA to a unique cysteine residue and chelation of 18F-AlF. In vivo studies were performed in PD-L1-positive, PD-L1-negative, and mixed tumor-bearing severe combined immunodeficiency mice. Tracer was injected via the tail vein, and dynamic PET scans were acquired for 90 min, followed by γ-counting biodistribution. Immunohistochemical staining with an antibody specific for anti-PD-L1 (22C3) was used to evaluate the tumor distribution of PD-L1. Immunohistochemistry results were then compared with ex vivo autoradiographic images obtained from adjacent tissue sections. Results: NOTA-ZPD-L1_1 was labeled, with a radiochemical yield of 15.1% ± 5.6%, radiochemical purity of 96.7% ± 2.0%, and specific activity of 14.6 ± 6.5 GBq/µmol. Surface plasmon resonance showed a NOTA-conjugated ligand binding affinity of 1 nM. PET imaging demonstrated rapid uptake of tracer in the PD-L1-positive tumor, whereas the PD-L1-negative control tumor showed little tracer retention. Tracer clearance from most organs and blood was quick, with biodistribution showing prominent kidney retention, low liver uptake, and a significant difference between PD-L1-positive (percentage injected dose per gram [%ID/g] = 2.56 ± 0.33) and -negative (%ID/g = 0.32 ± 0.05) tumors (P = 0.0006). Ex vivo autoradiography showed excellent spatial correlation with immunohistochemistry in mixed tumors. Conclusion: Our results show that Affibody ligands can be effective at targeting tumor PD-L1 in vivo, with good specificity and rapid clearance. Future studies will explore methods to reduce kidney activity retention and further increase tumor uptake.


Assuntos
Antígeno B7-H1/metabolismo , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Marcadores de Afinidade , Animais , Anticorpos Monoclonais , Autorradiografia , Feminino , Radioisótopos de Flúor/farmacocinética , Humanos , Imuno-Histoquímica , Marcação por Isótopo/métodos , Masculino , Camundongos SCID , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Compostos Organometálicos , Compostos Radiofarmacêuticos/farmacocinética , Ressonância de Plasmônio de Superfície , Distribuição Tecidual
4.
J Med Chem ; 47(9): 2283-95, 2004 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15084127

RESUMO

As part of a continued effort to identify inhibitors of hepatitis C viral (HCV) replication, we report here the synthesis and evaluation of a series of nucleoside analogues and their corresponding triphosphates. Nucleosides were evaluated for their ability to inhibit HCV RNA replication in a cell-based, subgenomic replicon system, while nucleoside triphosphates were evaluated for their ability to inhibit in vitro RNA synthesis mediated by the HCV RNA-dependent RNA polymerase, NS5B. 2'-C-Methyladenosine and 2'-C-methylguanosine were identified as potent inhibitors of HCV RNA replication, and the corresponding triphosphates were found to be potent inhibitors of HCV NS5B-mediated RNA synthesis. The data generated in the cell-based assay demonstrated a fairly stringent structure-activity relationship around the active nucleosides. Increase in steric bulk beyond methyl on C2, change in the stereo- or regiochemistry of the methyl substituent, or change of identity of the heterobase beyond that of the endogenous adenine or guanine was found to lead to loss of inhibitory activity. The results highlight the importance of the ribo configuration 2'- and 3'-hydroxy pharmacophores for inhibition of HCV RNA replication in the cell-based assay and demonstrate that inclusion of the 2'-C-methylribonucleoside pharmacophore leads to increased resistance to adenosine deaminase and purine nucleoside phosphorylase mediated metabolism.


Assuntos
Hepacivirus/química , Nucleosídeos de Purina/síntese química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Ribonucleosídeos/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Desaminase/química , Ligação de Hidrogênio , Metilação , Conformação Molecular , Nucleosídeos de Purina/química , Purina-Núcleosídeo Fosforilase/química , Purinas/química , RNA Polimerase Dependente de RNA/química , Ribonucleosídeos/química , Ribose/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química
5.
Antimicrob Agents Chemother ; 48(10): 3944-53, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15388457

RESUMO

Improved treatments for chronic hepatitis C virus (HCV) infection are needed due to the suboptimal response rates and deleterious side effects associated with current treatment options. The triphosphates of 2'-C-methyl-adenosine and 2'-C-methyl-guanosine were previously shown to be potent inhibitors of the HCV RNA-dependent RNA polymerase (RdRp) that is responsible for the replication of viral RNA in cells. Here we demonstrate that the inclusion of a 7-deaza modification in a series of purine nucleoside triphosphates results in an increase in inhibitory potency against the HCV RdRp and improved pharmacokinetic properties. Notably, incorporation of the 7-deaza modification into 2'-C-methyl-adenosine results in an inhibitor with a 20-fold-increased potency as the 5'-triphosphate in HCV RdRp assays while maintaining the inhibitory potency of the nucleoside in the bicistronic HCV replicon and with reduced cellular toxicity. In contrast, while 7-deaza-2'-C-methyl-GTP also displays enhanced inhibitory potency in enzyme assays, due to poor cellular penetration and/or metabolism, the nucleoside does not inhibit replication of a bicistronic HCV replicon in cell culture. 7-Deaza-2'-C-methyl-adenosine displays promising in vivo pharmacokinetics in three animal species, as well as an acute oral lethal dose in excess of 2,000 mg/kg of body weight in mice. Taken together, these data demonstrate that 7-deaza-2'-C-methyl-adenosine is an attractive candidate for further investigation as a potential treatment for HCV infection.


Assuntos
Antivirais , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/metabolismo , Tubercidina/farmacologia , Tubercidina/farmacocinética , Animais , Técnicas de Cultura , Farmacorresistência Viral , Feminino , Genótipo , Hepacivirus/enzimologia , Hepatite C/enzimologia , Humanos , Células Jurkat , Dose Letal Mediana , Camundongos , Polinucleotídeo Adenililtransferase/metabolismo , RNA/biossíntese , RNA Polimerase II/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Timidina/farmacologia , Replicação Viral/efeitos dos fármacos
6.
J Biol Chem ; 278(49): 49164-70, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-12966103

RESUMO

The urgent need for efficacious drugs to treat chronic hepatitis C virus (HCV) infection requires a concerted effort to develop inhibitors specific for virally encoded enzymes. We demonstrate that 2'-C-methyl ribonucleosides are efficient chain-terminating inhibitors of HCV genome replication. Characterization of drug-resistant HCV replicons defined a single S282T mutation within the active site of the viral polymerase that conferred loss of sensitivity to structurally related compounds in both replicon and isolated polymerase assays. Biochemical analyses demonstrated that resistance at the level of the enzyme results from a combination of reduced affinity of the mutant polymerase for the drug and an increased ability to extend the incorporated nucleoside analog. Importantly, the combination of these agents with interferon-alpha results in synergistic inhibition of HCV genome replication in cell culture. Furthermore, 2'-C-methyl-substituted ribonucleosides also inhibited replication of genetically related viruses such as bovine diarrhea virus, yellow fever, and West African Nile viruses. These observations, together with the finding that 2'-C-methyl-guanosine in particular has a favorable pharmacological profile, suggest that this class of compounds may have broad utility in the treatment of HCV and other flavivirus infections.


Assuntos
Antivirais/farmacologia , Hepacivirus/fisiologia , Ribonucleosídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Farmacorresistência Viral , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Ribonucleosídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA