RESUMO
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Assuntos
Angiotensinogênio , Doenças Cardiovasculares , Feminino , Humanos , Masculino , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Angiotensinogênio/metabolismo , Doenças Cardiovasculares/metabolismo , Sistemas de Liberação de Medicamentos , Rim/irrigação sanguínea , Rim/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina , Inibidores do Transportador 2 de Sódio-Glicose/metabolismoRESUMO
The prostaglandin E2 (PGE2) receptor EP3 has been detected in the thick ascending limb (TAL) and the collecting duct of the kidney, where its actions are proposed to inhibit water reabsorption. However, EP3 is also expressed in other cell types, including vascular endothelial cells. The aim here was to determine the contribution of EP3 in renal water handling in male and female adult mice by phenotyping a novel mouse model with doxycycline-dependent deletion of EP3 throughout the kidney tubule (EP3-/- mice). RNAscope demonstrated that EP3 was highly expressed in the cortical and medullary TAL of adult mice. Compared with controls EP3 mRNA expression was reduced by >80% in whole kidney (RT-qPCR) and nondetectable (RNAscope) in renal tubules of EP3-/- mice. Under basal conditions, there were no significant differences in control and EP3-/- mice of both sexes in food and water intake, body weight, urinary output, or clinical biochemistries. No differences were detectable between genotypes in handling of an acute water load or in their response to the vasopressin analog 1-deamino-8-d-arginine-vasopressin (dDAVP). No differences in water handling were observed when PGE2 production was enhanced using 1% NaCl load. Expression of proteins involved in kidney water handling was not different between genotypes. This study demonstrates that renal tubular EP3 is not essential for body fluid homeostasis in males or females, even when PGE2 levels are high. The mouse model is a novel tool for examining the role of EP3 in kidney function independently of potential developmental abnormalities or systemic effects.NEW & NOTEWORTHY The prostanoid EP3 receptor is proposed to play a key role in the kidney tubule and antagonize the effects of vasopressin on aquaporin-mediated water reabsorption. Here, we phenotyped a kidney tubule-specific inducible knockout mouse model of the EP3 receptor. Our major finding is that, even under physiological stress, tubular EP3 plays no detectable role in renal water or solute handling. This suggests that other EP receptors must be important for renal salt and water handling.
Assuntos
Túbulos Renais , Camundongos Knockout , Receptores de Prostaglandina E Subtipo EP3 , Animais , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Receptores de Prostaglandina E Subtipo EP3/genética , Feminino , Masculino , Túbulos Renais/metabolismo , Homeostase , Camundongos , Equilíbrio Hidroeletrolítico , Camundongos Endogâmicos C57BL , Fenótipo , Fatores Sexuais , Deleção de Genes , Dinoprostona/metabolismoRESUMO
BACKGROUND AND HYPOTHESIS: Patients with ADPKD have disproportionately high levels of fibroblast growth factor-23 (FGF-23) for their CKD-stage with only a subgroup that develops kidney phosphate wasting. We assessed factors associated with phosphate wasting and hypothesize that it identifies patients with more severe disease and predicts disease progression. METHODS: We included 604 patients with ADPKD from a multi-center prospective observational (DIPAK) cohort in 4 university medical centers in the Netherlands. We measured parathyroid hormone (PTH), total plasma FGF-23 levels and calculated the ratio of tubular maximum reabsorption rate of phosphate to glomerular filtration rate (TmP/GFR) with < 0.8 mmol/L defined as kidney phosphate wasting. We analysed the association of TmP/GFR with eGFR decline over time and the risk for a composite kidney outcome (≥ 30% eGFR decline, kidney failure or kidney replacement therapy). RESULTS: In our cohort (age 48 ± 12 years, 39% male, eGFR 63 ± 28 mL/min/1.73m2), 59% of patients had phosphate wasting. Male sex (coefficient -0.2, 95% confidence interval [CI] -0.2; -0.1), eGFR (0.002, 0.001-0.004), FGF-23 (0.1, 0.03-0.2), PTH(-0.2, -0.3; -0.06) and Copeptin(-0.08, -0.1; -0.08) were associated with TmP/GFR. Corrected for PTH, FGF-23 and eGFR, every 0.1 mmol/L decrease in TmP/GFR was associated with a greater eGFR decline of 0.2 ml/min/1.73m2/year (95% CI 0.01-0.3) and an increased hazard ratio of 1.09 (95% CI 1.01-1.18) of the composite kidney outcome. CONCLUSION: Our study shows that in patients with ADPKD phosphate wasting is prevalent and associated with more rapid disease progression. Phosphate wasting may be a consequence of early proximal tubular dysfunction and insufficient suppression of PTH.
RESUMO
BACKGROUND: Observational studies suggest that adequate dietary potassium intake (90-120 mmol/day) may be renoprotective, but the effects of increasing dietary potassium and the risk of hyperkalemia are unknown. METHODS: This is a prespecified analysis of the run-in phase of a clinical trial in which 191 patients (age 68±11 years, 74% males, 86% European ancestry, eGFR 31±9 ml/min per 1.73 m2, 83% renin-angiotensin system inhibitors, 38% diabetes) were treated with 40 mmol potassium chloride (KCl) per day for 2 weeks. RESULTS: KCl supplementation significantly increased urinary potassium excretion (72±24 to 107±29 mmol/day), plasma potassium (4.3±0.5 to 4.7±0.6 mmol/L), and plasma aldosterone (281 [198-431] to 351 [241-494] ng/L), but had no significant effect on urinary sodium excretion, plasma renin, BP, eGFR, or albuminuria. Furthermore, KCl supplementation increased plasma chloride (104±3 to 105±4 mmol/L) and reduced plasma bicarbonate (24.5±3.4 to 23.7±3.5 mmol/L) and urine pH (all P<0.001), but did not change urinary ammonium excretion. In total, 21 participants (11%) developed hyperkalemia (plasma potassium 5.9±0.4 mmol/L). They were older and had higher baseline plasma potassium. CONCLUSIONS: In patients with CKD stage G3b-4, increasing dietary potassium intake to recommended levels with potassium chloride supplementation raises plasma potassium by 0.4 mmol/L. This may result in hyperkalemia in older patients or those with higher baseline plasma potassium. Longer-term studies should address whether cardiorenal protection outweighs the risk of hyperkalemia.Clinical trial number: NCT03253172.
Assuntos
Hiperpotassemia , Insuficiência Renal Crônica , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Feminino , Cloreto de Potássio/efeitos adversos , Hiperpotassemia/induzido quimicamente , Potássio na Dieta , Potássio , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Suplementos NutricionaisRESUMO
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve hard renal outcomes in type 2 diabetes. This is possibly explained by the fact that SGLT2i normalize the measured glomerular filtration rate (mGFR) by increasing renal vascular resistance, as was shown in young people with type 1 diabetes and glomerular hyperfiltration. Therefore, we compared the renal hemodynamic effects of dapagliflozin with gliclazide in type 2 diabetes. The mGFR and effective renal plasma flow were assessed using inulin and para-aminohippurate clearances in the fasted state, during clamped euglycemia (5 mmol/L) and during clamped hyperglycemia (15 mmol/L). Filtration fraction and renal vascular resistance were calculated. Additionally, factors known to modulate renal hemodynamics were measured. In 44 people with type 2 diabetes on metformin monotherapy (Hemoglobin A1c 7.4%, mGFR 113 mL/min), dapagliflozin versus gliclazide reduced mGFR by 5, 10, and 12 mL/min in the consecutive phases while both agents similarly improved Hemoglobin A1c (-0.48% vs -0.65%). Dapagliflozin also reduced filtration fraction without increasing renal vascular resistance, and increased urinary adenosine and prostaglandin concentrations. Gliclazide did not consistently alter renal hemodynamic parameters. Thus, beyond glucose control, SGLT2i reduce mGFR and filtration fraction in type 2 diabetes. The fact that renal vascular resistance was not increased by dapagliflozin suggests that this is due to post-glomerular vasodilation rather than pre-glomerular vasoconstriction.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Rim/irrigação sanguínea , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Vasodilatação/efeitos dos fármacos , Idoso , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Método Duplo-Cego , Feminino , Gliclazida/farmacologia , Gliclazida/uso terapêutico , Taxa de Filtração Glomerular/efeitos dos fármacos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Hemoglobinas Glicadas/análise , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Pessoa de Meia-Idade , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Resultado do Tratamento , Vasoconstrição/efeitos dos fármacosRESUMO
Sodium-glucose transporter (SGLT)2 inhibitors increase plasma magnesium and plasma phosphate and may cause ketoacidosis, but the contribution of improved glycemic control to these observations as well as effects on other electrolytes and acid-base parameters remain unknown. Therefore, our objective was to compare the effects of SGLT2 inhibitors dapagliflozin and sulfonylurea gliclazide on plasma electrolytes, urinary electrolyte excretion, and acid-base balance in people with Type 2 diabetes (T2D). We assessed the effects of dapagliflozin and gliclazide treatment on plasma electrolytes and bicarbonate, 24-hour urinary pH and excretions of electrolytes, ammonium, citrate, and sulfate in 44 metformin-treated people with T2D and preserved kidney function. Compared with gliclazide, dapagliflozin increased plasma chloride by 1.4 mmol/l (95% CI 0.4-2.4), plasma magnesium by 0.03 mmol/l (95% CI 0.01-0.06), and plasma sulfate by 0.02 mmol/l (95% CI 0.01-0.04). Compared with baseline, dapagliflozin also significantly increased plasma phosphate, but the same trend was observed with gliclazide. From baseline to week 12, dapagliflozin increased the urinary excretion of citrate by 0.93 ± 1.72 mmol/day, acetoacetate by 48 µmol/day (IQR 17-138), and ß-hydroxybutyrate by 59 µmol/day (IQR 0-336), without disturbing acid-base balance. In conclusion, dapagliflozin increases plasma magnesium, chloride, and sulfate compared with gliclazide, while reaching similar glucose-lowering in people with T2D. Dapagliflozin also increases urinary ketone excretion without changing acid-base balance. Therefore, the increase in urinary citrate excretion by dapagliflozin may reflect an effect on cellular metabolism including the tricarboxylic acid cycle. This potentially contributes to kidney protection.
Assuntos
Equilíbrio Ácido-Base/efeitos dos fármacos , Glicemia/metabolismo , Eletrólitos/metabolismo , Túbulos Renais/patologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio/metabolismo , Compostos de Sulfonilureia/uso terapêutico , Compostos de Amônio/urina , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Bicarbonatos/sangue , Citratos/urina , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/urina , Eletrólitos/sangue , Feminino , Gliclazida/farmacologia , Gliclazida/uso terapêutico , Taxa de Filtração Glomerular/efeitos dos fármacos , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Cetonas/sangue , Cetonas/urina , Masculino , Pessoa de Meia-Idade , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Compostos de Sulfonilureia/farmacologiaRESUMO
BACKGROUND: Inhibition of prostaglandin synthesis by nonsteroidal anti-inflammatory drugs is associated with cardiovascular mortality and kidney disease. This study hypothesizes that urinary prostaglandin E2 (PGE2) and PGE2 metabolite (PGEM) excretions are markers of cardiovascular and kidney health, because they reflect both systemic and kidney-derived PGE2 production. METHODS AND RESULTS: PGE2 and PGEM were measured in spot urine samples from 2291 participants (≥55 years old) of the population-based Rotterdam Study. Urinary PGE2 and PGEM excretions were analyzed using linear regression analyses to identify cross-sectional associations with cardiovascular risk factors and baseline estimated glomerular filtration rate (eGFR). Longitudinal associations with cardiovascular mortality and kidney outcomes (eGFR <60 or <45 mL/min per 1.73 m2 and the composite outcome 40% eGFR loss or kidney failure) were assessed with Cox regression. Urinary PGE2 and PGEM excretions were higher with increasing age, lower eGFR, smoking, diabetes, and albuminuria. A 2-fold higher urinary PGE2 and PGEM excretion was associated with a higher risk of cardiovascular mortality (28 825 patient-years; 160 events; PGE2 hazard ratio [HR], 1.27, [95% CI, 1.06-1.54]; PGEM HR, 1.36 [95% CI, 1.10-1.67]). Higher PGE2 excretions were also associated with a higher risk of incident eGFR <60 mL/min per 1.73 m2 (31 530 person-years; 691 events; HR, 1.13 [95% CI, 1.02-1.25]) with similar HRs for the other kidney outcomes. CONCLUSIONS: Urinary PGE2 and PGEM excretions are novel markers for the presence and progression of cardiovascular and kidney disease. Future studies should address whether these associations are causal and can be targeted to improve cardiovascular and kidney outcomes.
Assuntos
Doenças Cardiovasculares , Nefropatias , Humanos , Pessoa de Meia-Idade , Dinoprostona , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos Transversais , Nefropatias/diagnóstico , Nefropatias/epidemiologia , Nefropatias/complicações , Rim , Taxa de Filtração Glomerular/fisiologia , Albuminúria/urina , Fatores de RiscoRESUMO
CONTEXT: Thiazide-induced hyponatremia is one of the most common forms of hyponatremia, but its pathogenesis is incompletely understood. Recent clinical data suggest links with prostaglandin E2 (PGE2) and a single nucleotide polymorphism (SNP) in the prostaglandin transporter gene (SLCO2A1), but it is unknown if these findings also apply to the general population. OBJECTIVE: To study the associations between serum sodium, thiazide diuretics, urinary excretions of PGE2, and its metabolite (PGEM), and the rs34550074 SNP in SLCO2A1 in the general population. DESIGN: Prospective population-based cohort study (Rotterdam Study). SETTING: General population. PARTICIPANTS: 2178 participants (65% female, age 64 ± 8 years). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Serum sodium levels. RESULTS: Higher urinary PGE2 excretion was associated with lower serum sodium: difference in serum sodium for each 2-fold higher PGE2 -0.19â mmol/L [95% confidence interval (CI) -0.31 to -0.06], PGEM -0.29â mmol/L (95% CI -0.41 to -0.17). This association was stronger in thiazide users (per 2-fold higher PGE2 -0.73 vs -0.12â mmol/L and PGEM -0.6 vs -0.25â mmol/L, P for interaction <.05 for both). A propensity score matching analysis of thiazide vs non-thiazide users yielded similar results. The SNP rs34550074 was not associated with lower serum sodium or higher urinary PGE2 or PGEM excretion in thiazide or non-thiazide users. CONCLUSION: Serum sodium is lower in people with higher urinary PGE2 and PGEM excretion, and this association is stronger in thiazide users. This suggests that PGE2-mediated water reabsorption regulates serum sodium, which is relevant for the pathogenesis of hyponatremia in general and thiazide-induced hyponatremia specifically.
Assuntos
Dinoprostona , Transportadores de Ânions Orgânicos , Polimorfismo de Nucleotídeo Único , Inibidores de Simportadores de Cloreto de Sódio , Sódio , Humanos , Feminino , Pessoa de Meia-Idade , Dinoprostona/urina , Dinoprostona/sangue , Masculino , Inibidores de Simportadores de Cloreto de Sódio/efeitos adversos , Inibidores de Simportadores de Cloreto de Sódio/uso terapêutico , Idoso , Transportadores de Ânions Orgânicos/genética , Sódio/urina , Sódio/sangue , Estudos Prospectivos , Hiponatremia/urina , Hiponatremia/induzido quimicamente , Estudos de CoortesRESUMO
BACKGROUND: Prostaglandin E2 (PGE2) plays a physiological role in osmoregulation, a process that is affected early in autosomal dominant polycystic kidney disease (ADPKD). PGE2 has also been implicated in the pathogenesis of ADPKD in preclinical models, but human data are limited. Here, we hypothesized that urinary PGE2 excretion is associated with impaired osmoregulation, disease severity, and disease progression in human ADPKD. METHODS: Urinary excretions of PGE2 and its metabolite (PGEM) were measured in a prospective cohort of patients with ADPKD. The associations between urinary PGE2 and PGEM excretions, markers of osmoregulation, eGFR and height-adjusted total kidney volume were assessed using linear regression models. Cox regression and linear mixed models were used for the longitudinal analysis of the associations between urinary PGE2 and PGEM excretions and disease progression defined as 40% eGFR loss or kidney failure, and change in eGFR over time. In two intervention studies, we quantified the effect of starting tolvaptan and adding hydrochlorothiazide to tolvaptan on urinary PGE2 and PGEM excretions. RESULTS: In 562 patients with ADPKD (61% female, eGFR 63±28 ml/min per 1.73 m 2 ), higher urinary PGE2 or PGEM excretions were independently associated with higher plasma copeptin, lower urine osmolality, lower eGFR, and greater total kidney volume. Participants with higher baseline urinary PGE2 and PGEM excretions had a higher risk of 40% eGFR loss or kidney failure (hazard ratio, 1.28; 95% confidence interval [CI], 1.13 to 1.46 and hazard ratio, 1.50; 95% CI, 1.26 to 1.80 per two-fold higher urinary PGE2 or PGEM excretions) and a faster change in eGFR over time (-0.39 [95% CI, -0.59 to -0.20] and -0.53 [95% CI, -0.75 to -0.31] ml/min per 1.73 m 2 per year). In the intervention studies, urinary PGEM excretion was higher after starting tolvaptan, while urinary PGE2 excretion was higher after adding hydrochlorothiazide to tolvaptan. CONCLUSIONS: Higher urinary PGE2 and PGEM excretions in patients with ADPKD are associated with impaired osmoregulation, disease severity, and progression.