Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 51(18): 9576-9593, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37070193

RESUMO

How steroid hormone receptors (SHRs) regulate transcriptional activity remains partly understood. Upon activation, SHRs bind the genome together with a co-regulator repertoire, crucial to induce gene expression. However, it remains unknown which components of the SHR-recruited co-regulator complex are essential to drive transcription following hormonal stimuli. Through a FACS-based genome-wide CRISPR screen, we functionally dissected the Glucocorticoid Receptor (GR) complex. We describe a functional cross-talk between PAXIP1 and the cohesin subunit STAG2, critical for regulation of gene expression by GR. Without altering the GR cistrome, PAXIP1 and STAG2 depletion alter the GR transcriptome, by impairing the recruitment of 3D-genome organization proteins to the GR complex. Importantly, we demonstrate that PAXIP1 is required for stability of cohesin on chromatin, its localization to GR-occupied sites, and maintenance of enhancer-promoter interactions. In lung cancer, where GR acts as tumor suppressor, PAXIP1/STAG2 loss enhances GR-mediated tumor suppressor activity by modifying local chromatin interactions. All together, we introduce PAXIP1 and STAG2 as novel co-regulators of GR, required to maintain 3D-genome architecture and drive the GR transcriptional programme following hormonal stimuli.

2.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34318896

RESUMO

Androgen receptor (AR) splice variants are proposed to be a potential driver of lethal castration-resistant prostate cancer. AR splice variant 7 (ARv7) is the most commonly observed isoform and strongly correlates with resistance to second-generation anti-androgens. Despite this clinical evidence, the interplay between ARv7 and the highly expressed full-length AR (ARfl) remains unclear. In this work, we show that ARfl/ARv7 heterodimers readily form in the nucleus via an intermolecular N/C interaction that brings the four termini of the proteins in close proximity. Combining fluorescence resonance energy transfer and fluorescence recovery after photobleaching, we demonstrate that these heterodimers undergo conformational changes following DNA binding, indicating dynamic nuclear receptor interaction. Although transcriptionally active, ARv7 can only form short-term interactions with DNA at highly accessible high-occupancy ARfl binding sites. Dimerization with ARfl does not affect ARv7 binding dynamics, suggesting that DNA binding occupancy is determined by the individual protein monomers and not the homodimer or heterodimer complex. Overall, these biophysical studies reveal detailed properties of ARv7 dynamics as both a homodimer or heterodimer with ARfl.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Humanos , Masculino , Isoformas de Proteínas , Receptores Androgênicos/genética
3.
J Cell Sci ; 132(5)2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683799

RESUMO

Transcription factor mobility is a determining factor in the regulation of gene expression. Here, we have studied the intranuclear dynamics of the glucocorticoid receptor (GR) by using fluorescence recovery after photobleaching and single-molecule microscopy. First, we have described the dynamic states in which the GR occurs. Second, we have analyzed the transitions between these states by using a continuous-time Markov chain model and functionally investigated these states by making specific mutations in the DNA-binding domain. This analysis revealed that the GR diffuses freely through the nucleus and, once it leaves this free diffusion state, most often enters a repetitive switching mode. In this mode it alternates between slow diffusion as a result of brief nonspecific DNA-binding events, and a state of stable binding to specific DNA target sites. This repetitive switching mechanism results in a compact search strategy that facilitates finding of DNA target sites by the GR.This article has an associated First Person interview with the first author of the paper.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Receptores de Glucocorticoides/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação/genética , Células COS , Chlorocebus aethiops , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Cadeias de Markov , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos/genética , Receptores de Glucocorticoides/genética
4.
Proc Natl Acad Sci U S A ; 115(19): E4368-E4376, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29632207

RESUMO

Initiation and promoter-proximal pausing are key regulatory steps of RNA Polymerase II (Pol II) transcription. To study the in vivo dynamics of endogenous Pol II during these steps, we generated fully functional GFP-RPB1 knockin cells. GFP-RPB1 photobleaching combined with computational modeling revealed four kinetically distinct Pol II fractions and showed that on average 7% of Pol II are freely diffusing, while 10% are chromatin-bound for 2.4 seconds during initiation, and 23% are promoter-paused for only 42 seconds. This unexpectedly high turnover of Pol II at promoters is most likely caused by premature termination of initiating and promoter-paused Pol II and is in sharp contrast to the 23 minutes that elongating Pol II resides on chromatin. Our live-cell-imaging approach provides insights into Pol II dynamics and suggests that the continuous release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation.


Assuntos
Regiões Promotoras Genéticas/fisiologia , RNA Polimerase II/metabolismo , Transcrição Gênica/fisiologia , Linhagem Celular Transformada , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , RNA Polimerase II/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
J Cell Sci ; 127(Pt 7): 1406-16, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24481814

RESUMO

Owing to the tremendous progress in microscopic imaging of fluorescently labeled proteins in living cells, the insight into the highly dynamic behavior of transcription factors has rapidly increased over the past decade. However, a consistent quantitative scheme of their action is still lacking. Using the androgen receptor (AR) as a model system, we combined three different fluorescence microscopy assays: single-molecule microscopy, photobleaching and correlation spectroscopy, to provide a quantitative model of the action of this transcription factor. This approach enabled us to distinguish two types of AR-DNA binding: very brief interactions, in the order of a few hundred milliseconds, and hormone-induced longer-lasting interactions, with a characteristic binding time of several seconds. In addition, freely mobile ARs were slowed down in the presence of hormone, suggesting the formation of large AR-co-regulator complexes in the nucleoplasm upon hormone activation. Our data suggest a model in which mobile hormone-induced complexes of transcription factors and co-regulators probe DNA by briefly binding at random sites, only forming relatively stable transcription initiation complexes when bound to specific recognition sequences.


Assuntos
DNA/metabolismo , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , DNA/química , DNA/genética , Humanos , Microscopia de Fluorescência/métodos , Fotodegradação , Ligação Proteica , Receptores Androgênicos/química , Receptores Androgênicos/genética
6.
J Cell Sci ; 125(Pt 19): 4498-506, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22767508

RESUMO

Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and enable cell proliferation, survival and motility. Despite the extensive description of the molecular composition of FAs, the complex regulation of FA dynamics is unclear. We have used photobleaching assays of whole cells to determine the protein dynamics in every single focal adhesion. We identified that the focal adhesion proteins FAK and paxillin exist in two different states: a diffuse cytoplasmic pool and a transiently immobile FA-bound fraction with variable residence times. Interestingly, the average residence time of both proteins increased with focal adhesion size. Moreover, increasing integrin clustering by modulating surface collagen density increased residence time of FAK but not paxillin. Finally, this approach was applied to measure FAK and paxillin dynamics using nocodazole treatment followed by washout. This revealed an opposite residence time of FAK and paxillin in maturing and disassembling FAs, which depends on the ventral and peripheral cellular position of the FAs.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/enzimologia , Paxilina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Citosol/efeitos dos fármacos , Citosol/metabolismo , Difusão , Células Epiteliais/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Adesões Focais/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Cinética , Células LLC-PK1 , Ligantes , Modelos Biológicos , Método de Monte Carlo , Nocodazol/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Suínos , Fatores de Tempo
7.
J Cell Sci ; 123(Pt 15): 2663-71, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20627952

RESUMO

Gene transcription in mammalian cells is a dynamic process involving regulated assembly of transcription complexes on chromatin in which the TATA-binding protein (TBP) plays a central role. Here, we investigate the dynamic behaviour of TBP by a combination of fluorescence recovery after photobleaching (FRAP) and biochemical assays using human cell lines of different origin. The majority of nucleoplasmic TBP and other TFIID subunits associate with chromatin in a highly dynamic manner. TBP dynamics are regulated by the joint action of the SNF2-related BTAF1 protein and the NC2 complex. Strikingly, both BTAF1 and NC2 predominantly affect TBP dissociation rates, leaving the association rate unchanged. Chromatin immunoprecipitation shows that BTAF1 negatively regulates TBP and NC2 binding to active promoters. Our results support a model for a BTAF1-mediated release of TBP-NC2 complexes from chromatin.


Assuntos
Cromatina/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Imunoprecipitação da Cromatina , Cromatografia em Gel , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/genética , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
8.
J Cell Biol ; 178(6): 913-24, 2007 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-17785516

RESUMO

Embryonic stem (ES) cells are able to grow indefinitely (self-renewal) and have the potential to differentiate into all adult cell types (pluripotency). The regulatory network that controls pluripotency is well characterized, whereas the molecular basis for the transition from self-renewal to the differentiation of ES cells is much less understood, although dynamic epigenetic gene silencing and chromatin compaction are clearly implicated. In this study, we report that UTF1 (undifferentiated embryonic cell transcription factor 1) is involved in ES cell differentiation. Knockdown of UTF1 in ES and carcinoma cells resulted in a substantial delay or block in differentiation. Further analysis using fluorescence recovery after photobleaching assays, subnuclear fractionations, and reporter assays revealed that UTF1 is a stably chromatin-associated transcriptional repressor protein with a dynamic behavior similar to core histones. An N-terminal Myb/SANT domain and a C-terminal domain containing a putative leucine zipper are required for these properties of UTF1. These data demonstrate that UTF1 is a strongly chromatin-associated protein involved in the initiation of ES cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular Tumoral , Células-Tronco Embrionárias/citologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Mutação , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Transativadores/genética
9.
Chromosome Res ; 19(1): 83-98, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21181254

RESUMO

Fluorescent protein labelling, as well as impressive progress in live cell imaging have revolutionised the view on how essential nuclear functions like gene transcription regulation and DNA repair are organised. Here, we address questions like how DNA-interacting molecules find and bind their target sequences in the vast amount of DNA. In addition, we discuss methods that have been developed for quantitative analysis of data from fluorescence recovery after photobleaching experiments (FRAP).


Assuntos
Sítios de Ligação , Cromatina/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas Nucleares/metabolismo , Reparo do DNA , Difusão , Estudos de Avaliação como Assunto , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Ligação Proteica
10.
Nat Commun ; 13(1): 3624, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750669

RESUMO

The precise regulation of RNA Polymerase II (Pol II) transcription after genotoxic stress is crucial for proper execution of the DNA damage-induced stress response. While stalling of Pol II on transcription-blocking lesions (TBLs) blocks transcript elongation and initiates DNA repair in cis, TBLs additionally elicit a response in trans that regulates transcription genome-wide. Here we uncover that, after an initial elongation block in cis, TBLs trigger the genome-wide VCP-mediated proteasomal degradation of promoter-bound, P-Ser5-modified Pol II in trans. This degradation is mechanistically distinct from processing of TBL-stalled Pol II, is signaled via GSK3, and contributes to the TBL-induced transcription block, even in transcription-coupled repair-deficient cells. Thus, our data reveal the targeted degradation of promoter-bound Pol II as a critical pathway that allows cells to cope with DNA damage-induced transcription stress and enables the genome-wide adaptation of transcription to genotoxic stress.


Assuntos
Quinase 3 da Glicogênio Sintase , Transcrição Gênica , Dano ao DNA/genética , Reparo do DNA/genética , Quinase 3 da Glicogênio Sintase/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
11.
Cell Mol Life Sci ; 67(11): 1919-27, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20186458

RESUMO

The androgen receptor protein has specific domains involved in DNA binding, ligand binding, and transactivation, whose activities need to be integrated during transcription activation. The hinge region, more particular a (629)RKLKK(633) motif, seems to play a crucial role in this process. Indeed, although the motif is not part of the DNA-binding domain, its positive residues are involved in optimal DNA binding and nuclear translocation as shown by mutation analysis. When the mutated ARs are forced into the nucleus, however, the residues seem to play different roles in transactivation. Moreover, we show by FRAP analysis that during activation, the AR is distributed in the nucleus in a mobile and two immobile fractions, and that mutations in the (629)RKLKK(633) motif affect the distribution of the AR over these three intranuclear fractions. Taken together, the (629)RKLKK(633) motif is a multifunctional motif that integrates nuclear localization, receptor stability, DNA binding, transactivation potential and intranuclear mobility.


Assuntos
Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptores Androgênicos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Ativação Transcricional
12.
Nat Cell Biol ; 23(8): 881-893, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326481

RESUMO

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time. Loss of ZF8 results in widespread weakening of topologically associating domains, aberrant gene expression and increased genome-wide DNA methylation. Thus, important chromatin-templated processes rely on accurate CTCF chromatin residence time, which we propose depends on local sequence and chromatin context as well as global CTCF protein concentration.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Genoma , Células-Tronco Pluripotentes/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Mitose , Células-Tronco Embrionárias Murinas , Mutação , Células-Tronco Pluripotentes/metabolismo , Fatores de Tempo , Elongação da Transcrição Genética
13.
Nat Cell Biol ; 23(6): 608-619, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108662

RESUMO

Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms.


Assuntos
Dano ao DNA , Reparo do DNA , Instabilidade Genômica , Fator 1 de Elongação de Peptídeos/metabolismo , Elongação da Transcrição Genética , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Evolução Molecular , Células HCT116 , Humanos , Fator 1 de Elongação de Peptídeos/genética , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Ubiquitinação
14.
Curr Biol ; 17(22): 1972-7, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17980597

RESUMO

Protein ubiquitination is critical for numerous cellular functions, including DNA damage response pathways. Histones are the most abundant monoubiquitin conjugates in mammalian cells; however, the regulation and the function of monoubiquitinated H2A (uH2A) and H2B (uH2B) remain poorly understood. In particular, little is known about mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from uH2A/uH2B. Here we identify the ubiquitin-specific protease 3 USP3 as a deubiquitinating enzyme for uH2A and uH2B. USP3 dynamically associates with chromatin and deubiquitinates H2A/H2B in vivo. The ZnF-UBP domain of USP3 mediates uH2A-USP3 interaction. Functional ablation of USP3 by RNAi leads to delay of S phase progression and to accumulation of DNA breaks, with ensuing activation of DNA damage checkpoint pathways. In addition, we show that in response to ionizing radiation, (1) uH2A redistributes and colocalizes in gamma-H2AX DNA repair foci and (2) USP3 is required for full deubiquitination of ubiquitin-conjugates/uH2A and gamma-H2AX dephosphorylation. Our studies identify USP3 as a novel regulator of H2A and H2B ubiquitination, highlight its role in preventing replication stress, and suggest its involvement in the response to DNA double-strand breaks. Together, our results implicate USP3 as a novel chromatin modifier in the maintenance of genome integrity.


Assuntos
Cromatina/metabolismo , Endopeptidases/fisiologia , Instabilidade Genômica/fisiologia , Fase S/fisiologia , Células HeLa , Histonas/metabolismo , Humanos , Proteases Específicas de Ubiquitina , Ubiquitinação/fisiologia
15.
Sci Rep ; 9(1): 10460, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320676

RESUMO

Focal adhesions (FAs) are multiprotein structures that link the intracellular cytoskeleton to the extracellular matrix. They mediate cell adhesion and migration, crucial to many (patho-) physiological processes. We examined in two cell types from different species the binding dynamics of functionally related FA protein pairs: paxillin and vinculin versus zyxin and VASP. In photobleaching experiments ~40% of paxillin and vinculin remained stably associated with a FA for over half an hour. Zyxin and VASP predominantly displayed more transient interactions. We show protein binding dynamics are influenced by FA location and orientation. In FAs located close to the edge of the adherent membrane paxillin, zyxin and VASP were more dynamic and had larger bound fractions. Zyxin and VASP were also more dynamic and had larger bound fractions at FAs perpendicular compared to parallel to this edge. Finally, we developed a photoconversion assay to specifically visualise stably bound proteins within subcellular structures and organelles. This revealed that while paxillin and vinculin are distributed evenly throughout FAs, their stably bound fractions form small clusters within the FA-complex. These clusters are more concentrated for paxillin than for vinculin and are mostly found at the proximal half of the FA where actin also enters.


Assuntos
Neoplasias Ósseas/metabolismo , Moléculas de Adesão Celular/metabolismo , Adesões Focais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Osteossarcoma/metabolismo , Paxilina/metabolismo , Fosfoproteínas/metabolismo , Vinculina/metabolismo , Zixina/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Moléculas de Adesão Celular/genética , Citoesqueleto/metabolismo , Cães , Matriz Extracelular/metabolismo , Humanos , Células Madin Darby de Rim Canino , Proteínas dos Microfilamentos/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Paxilina/genética , Fosfoproteínas/genética , Células Tumorais Cultivadas , Vinculina/genética , Zixina/genética
16.
Mol Cancer Ther ; 15(7): 1702-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27196756

RESUMO

Treatment-induced mutations in the ligand-binding domain of the androgen receptor (AR) are known to change antagonists into agonists. Recently, the F877L mutation has been described to convert enzalutamide into an agonist. This mutation was seen to co-occur in the endogenous AR allele of LNCaP cells, next to the T878A mutation. Here, we studied the effects of enzalutamide on the F877L and T878A mutants, as well as the double-mutant AR (F877L/T878A). Molecular modeling revealed favorable structural changes in the double-mutant AR that lead to a decrease in steric clashes for enzalutamide. Ligand-binding assays confirmed that the F877L mutation leads to an increase in relative binding affinity for enzalutamide, but only the combination with the T878A mutation resulted in a strong agonistic activity. This correlated with changes in coregulator recruitment and chromatin interactions. Our data show that enzalutamide is only a very weak partial agonist of the AR F877L, and a strong partial agonist of the double-mutant AR. Mol Cancer Ther; 15(7); 1702-12. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Códon , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Feniltioidantoína/análogos & derivados , Receptores Androgênicos/genética , Substituição de Aminoácidos , Antagonistas de Androgênios/farmacologia , Antineoplásicos/química , Benzamidas , Linhagem Celular Tumoral , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Nitrilas , Feniltioidantoína/química , Feniltioidantoína/farmacologia , Ligação Proteica , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Relação Estrutura-Atividade , Ativação Transcricional
18.
Methods Mol Biol ; 1251: 109-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25391797

RESUMO

We present a Monte Carlo simulation environment for modelling complex biological molecular interaction networks and for the design, validation, and quantitative analysis of FRAP assays to study these. The program is straightforward in its implementation and can be instructed through an intuitive script language. The simulation tool fits very well in a systems biology research setting that aims to maintain an interactive cycle of experiment-driven modelling and model-driven experimentation: the model and the experiment are in the same simulation. The full program can be obtained by request to the authors.


Assuntos
Algoritmos , Recuperação de Fluorescência Após Fotodegradação/métodos , Modelos Biológicos , Simulação de Dinâmica Molecular , Biologia de Sistemas/métodos , Difusão , Método de Monte Carlo , Ligação Proteica , Interface Usuário-Computador
19.
PLoS One ; 9(3): e90532, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24632838

RESUMO

Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (∼ 0.7 s) and the other half for longer time periods (∼ 2.3 s). A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors) show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (≤ 1 ms) interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.


Assuntos
DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Microscopia/métodos , Receptores de Glucocorticoides/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Modelos Teóricos , Ligação Proteica , Receptores de Mineralocorticoides/metabolismo
20.
PLoS One ; 7(9): e46085, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049943

RESUMO

The leukemia-associated fusion protein MN1-TEL combines the transcription-activating domains of MN1 with the DNA-binding domain of the transcriptional repressor TEL. Quantitative photobleaching experiments revealed that ∼20% of GFP-tagged MN1 and TEL is transiently immobilised, likely due to indirect or direct DNA binding, since transcription inhibition abolished immobilisation. Interestingly, ∼50% of the MN1-TEL fusion protein was immobile with much longer binding times than unfused MN1 and TEL. MN1-TEL immobilisation was not observed when the TEL DNA-binding domain was disrupted, suggesting that MN1-TEL stably occupies TEL recognition sequences, preventing binding of factors required for proper transcription regulation, which may contribute to leukemogenesis.


Assuntos
Proteínas de Fusão Oncogênica/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Animais , Recuperação de Fluorescência Após Fotodegradação , Camundongos , Método de Monte Carlo , Células NIH 3T3 , Proteínas Oncogênicas/genética , Proteínas de Fusão Oncogênica/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Transativadores , Proteínas Supressoras de Tumor , Variante 6 da Proteína do Fator de Translocação ETS
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA