Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13578, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866859

RESUMO

Our research focuses on enhancing the broadband absorption capability of organic solar cells (OSCs) by integrating plasmonic nanostructures made of Titanium nitride (TiN). Traditional OSCs face limitations in absorption efficiency due to their thickness, but incorporating plasmonic nanostructures can extend the path length of light within the active material, thereby improving optical efficiency. In our study, we explore the use of refractory plasmonics, a novel type of nanostructure, with TiN as an example of a refractory metal. TiN offers high-quality localized surface plasmon resonance in the visible spectrum and is cost-effective, readily available, and compatible with CMOS technology. We conducted detailed numerical simulations to optimize the design of nanostructured OSCs, considering various shapes and sizes of nanoparticles within the active layer (PM6Y6). Our investigation focused on different TiN plasmonic nanostructures such as nanospheres, nanocubes, and nanocylinders, analyzing their absorption spectra in a polymer environment. We assessed the impact of their incorporation on the absorbed power and short-circuit current (Jsc) of the organic solar cell.

2.
Sci Rep ; 13(1): 5793, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031268

RESUMO

In this work, we present the analysis and design of an efficient nanoantenna sensor based on localized surface plasmon resonance (LSPR). A high refractive index dielectric nanostructure can exhibit strong radiation resonances with high electric field enhancement inside the gap. The use of silicon instead of metals as the material of choice in the design of such nanoantennas is advantageous since it allows the integration of nanoantenna-based structures into integrated-optoelectronics circuits manufactured using common fabrication methods in the electronic industry. It also allows the suggested devices to be mass-produced at a low cost. The proposed nanoantenna consists of a highly doped silicon nanorod and is placed on a dielectric substrate. Different shapes and different concentrations of doping for the nanoantenna structures that are resonant in the mid-infrared region are investigated and numerically analyzed. The wavelength of the enhancement peak as well as the enhancement level itself vary as the surrounding material changes. As a result, sensors may be designed to detect molecules via their characteristic vibrational transitions. The 3D FDTD approach via Lumerical software is used to obtain the numerical results. The suggested nanoantennas exhibit ultra-high local field enhancement inside the gap of the dipole structure.

3.
Sci Rep ; 13(1): 15545, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730905

RESUMO

Perfect absorbers can be used in photodetectors, thermal imaging, microbolometers, and thermal photovoltaic solar energy conversions. The spectrum of Mid-infrared (MIR) wavelengths offers numerous advantages across a wide range of applications. In this work, we propose a fractal MIR broadband absorber which is composed of three layers: metal, dielectric, and metal (MDM), with the metal being considered as n-type doped silicon (D-Si) and the dielectric is silicon carbide (SiC). The architectural design was derived from the Sierpinski carpet fractal, and different building blocks were simulated to attain optimal absorption. The 3D finite element method (FEM) approach using COMSOL Multiphysics software is used to obtain numerical results. The suggested fractal absorber exhibits high absorption enhancement for MIR in the range between 3 and 9 µm. D-Si exhibits superior performance compared to metals in energy harvesting applications that utilize plasmonics at the mid-infrared range. Typically, semiconductors exhibit rougher surfaces than noble metals, resulting in lower scattering losses. Moreover, silicon presents various advantages, including compatibility with complementary metal-oxide-semiconductor (CMOS) and simple manufacturing through conventional silicon fabrication methods. In addition, the utilization of doped silicon material in the mid-IR region facilitates the development of microscale integrated plasmonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA