Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Sep Sci ; 47(11): e2400113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819739

RESUMO

An amide-based covalent organic framework (COF) was successfully synthesized using the reaction between 1,3,5-trimesoyl chloride and ethylenediamine. The structure and morphology of the COF were characterized using Fourier-transform infrared spectra, nuclear magnetic resonance spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area analysis. The COF was employed as a solid-phase extraction adsorbent for the sampling and preconcentration of chlorophenols from industrial wastewater samples prior to high-performance liquid chromatography with ultraviolet detection. The experimental parameters influencing the extraction efficiency including type and volume of eluent solvent, sample solution volume, salt concentration, sample flow rate, and sample solution pH were investigated and optimized using a response surface methodology employing Box-Behnken-design. Under optimized conditions, calibration curves exhibited good linearities over the range of 0.003-10 µg/mL with determination coefficients (R2) ranging from 0.9982 to 0.9999. The method's limits of detection ranged from 0.001 to 0.01 µg/mL. Good repeatability was achieved with relative standard deviations below 4.7%. The developed procedure utilizing the COF adsorbent was successfully applied to determine chlorophenols accurately and precisely in various industrial wastewater samples.

2.
Environ Monit Assess ; 196(6): 582, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806872

RESUMO

IoT is a game-changer across all fields, including chemistry. Embracing sustainable practices and green chemistry, the miniaturization and automation of systems, and their integration into IoT is key to achieving these principles, as a rising trend with momentum. Particularly, IoT and analytical chemistry are linked in the rapid exchange of analytical data for environmental, industrial, healthcare, and educational applications. Meanwhile, cooperation with other fields of science is evident, and there is a prompt and subjective analysis of information related to analytical systems and methodologies. This paper will review the concepts, requirements, and architecture of IoT and its role in the miniaturization and automation of analytical tools using electronic modules and sensors. The aim is to explore the standards and perspectives of IoT and its interaction with different aspects of analytical chemistry. Additionally, it aimed to explain the basics and applications of IoT for chemists, and its relevance to different subfields of analytical chemistry, particularly in the field of environmental chemical surveillance. The article also covers updating IoT devices and creating DIY-based degradation devices to enhance the educational aspect of chemistry and reduce barriers to lab facilities and equipment. Lastly, it will explore how IoT is really important and how it's going to significantly impact analytical chemistry.


Assuntos
Monitoramento Ambiental , Internet das Coisas , Miniaturização , Monitoramento Ambiental/métodos
3.
Anal Bioanal Chem ; 415(20): 4923-4934, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37351669

RESUMO

Silica nanospheres (SNS) were grown on the inner walls of silica capillaries through a dynamic in situ nucleation process to prepare a highly porous and large accessible surface area substrate. The SNS were then functionalized with octadecyl (C18), 3-aminopropyltriethoxysilane (APTES), beta-cyclodextrin (ß-CD), and amino groups to develop robust and efficient chromatographic stationary phases. The modified silica capillaries were exploited for open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) applications. The prepared stationary phases were compared to conventional capillaries in terms of separation performance. The synthesis process was optimized, and the bonded-phase stationary phases were characterized by the electron microscopy technique. The effects of different solvents, additives, and functional groups on the geometry and chromatographic resolving power of the SNS were envisaged. The capillaries modified with octadecyl groups were evaluated for the separation of non-steroidal anti-inflammatory drugs, phenones, alkenylbenzenes, and enantiomers of chlorophenoxy herbicides. As an application instance, an SNS-C18-coated capillary was utilized for the separation of alkenylbenzenes from clove extract and protein digest medium, through OT-LC and OT-CEC techniques, respectively. The ß-CD functionalized capillary was applied for the OT-CEC separation of a dichlorprop racemic mixture.

4.
J Sep Sci ; 46(15): e2300283, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37401843

RESUMO

Liquid chromatography is a prominent analytical technique in separation science and chemical analysis, applied across numerous fields of research and within industrial applications. Over the past few decades, there has been a growing interest in the miniaturization of this technique, which has been particularly enabled through new miniature and portable detection technologies for in-field, at-site, and point-of-need (collectively 'out-of-lab') analyses. Accordingly, significant advances have been made in recent years in the development of miniaturized liquid chromatography with photometric, electrochemical, and mass spectrometric detection, enabling the development of field-deployable and portable instruments for various applications. Herein, recent developments in the miniaturization of detection systems for inclusion within, and/or coupling with, portable liquid chromatographic systems, are reviewed in detail together with critical comments and expected future trends in this area.

5.
Pharmacology ; 108(4): 379-393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37253339

RESUMO

INTRODUCTION: Cholestasis is the stoppage of bile flow, leading to the accumulation of potentially cytotoxic bile components in the liver. These cytotoxic molecules affect many organs. Cholestasis-induced lung injury is a severe complication that could lead to tissue fibrosis and respiratory distress. Substantial evidence indicates the role of oxidative stress and inflammatory response in the pathogenesis of cholestasis-associated pulmonary damage. Agmatine (AGM; 1-amino-4-guanidinobutane) is a biogenic amine endogenously synthesized in the human body. This amine provides potent anti-inflammatory and antioxidant properties. METHODS: In the current study, a series (six C57BL/6J male mice/group) of bile duct-ligated (BDL) animals were monitored at scheduled intervals (7, 14, and 28 days after the BDL operation) to ensure inflammatory response in their lung tissue (by analyzing their bronchoalveolar lavage fluid [BALF]). It was found that the level of inflammatory cells, pro-inflammatory cytokines, and IgG in the BALF reached their maximum level on day 28 after the BDL surgery. Therefore, other research groups were selected as follows: 1) Sham-operated (2.5 mL/kg normal saline, i.p., for 28 consecutive days), 2) BDL, 3) BDL + AGM (1 mg/kg/day, i.p., for 28 consecutive days), and 4) BDL + AGM (10 mg/kg/day, i.p., for 28 consecutive days). Then, the BALF was monitored at scheduled time intervals (7, 14, and 28 days post-BDL). RESULTS: It was found that pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß), bile acids, bilirubin, and inflammatory cells (monocytes, neutrophils, and lymphocytes) were significantly increased in the BALF of BDL mice. Moreover, biomarkers of oxidative stress were significantly increased in the pulmonary tissue of cholestatic animals. Lung tissue histopathological changes, tissue collagen deposition, and increased TGF-ß were also detected. It was found that AGM significantly ameliorated cholestasis-induced lung injury. CONCLUSION: The effects of AGM on inflammatory indicators, oxidative stress biomarkers, and tissue fibrosis seem to play a pivotal role in its protective properties.


Assuntos
Agmatina , Colestase , Lesão Pulmonar , Pneumonia , Masculino , Camundongos , Humanos , Animais , Agmatina/farmacologia , Agmatina/uso terapêutico , Agmatina/metabolismo , Camundongos Endogâmicos C57BL , Colestase/complicações , Colestase/tratamento farmacológico , Colestase/metabolismo , Fígado , Estresse Oxidativo , Fibrose , Pneumonia/tratamento farmacológico , Pneumonia/prevenção & controle , Pneumonia/complicações , Biomarcadores/metabolismo , Citocinas/metabolismo , Aminas Biogênicas/metabolismo , Aminas Biogênicas/farmacologia
6.
Analyst ; 147(9): 1944-1951, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35393990

RESUMO

This research describes a nanomaterial-assisted thread-based isotachophoresis (TB-ITP) setup for the clean-up, preconcentration, and trapping of alkaloids (coptisine, berberine, and palmatine) in biological fluids, followed by their on-thread desorption electrospray ionization mass spectrometry (DESI-MS) determination. The reusable TB-ITP setup and a DESI compatible thread holder were 3D printed. A single nylon thread was employed as the ITP substrate for solute isolation and enrichment, and a short piece of graphene oxide (GO) functionalized nylon thread was tied around the main 'separation' thread as the 'trap' for the trapping of ITP focused alkaloids. Compared to the direct DESI-MS sample analysis, the sensitivity of the proposed method for the model solutes was increased up to 10-fold, benefiting from the TB-ITP focusing and enrichment strategy. This proof-of-concept use of nanomaterial-modified threads in electrofluidic separation and concentration procedures opens up a promising avenue to explore, particularly with regard to the sensitivity and selectivity of thread-based electrofluidic separation coupled with ambient ionization MS.


Assuntos
Alcaloides , Isotacoforese , Nanoestruturas , Isotacoforese/métodos , Nylons , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164048

RESUMO

Due to the growing prevalence of incurable diseases, such as cancer, worldwide, nowadays, the development of smart drug delivery systems is an inevitable necessity. Chemotaxis-driven movement of ionic liquid microdroplets containing therapeutic compounds is a well-known example of a smart drug delivery system. This review aims to classify, summarize, and compare ionic liquid-based chemotaxis systems in an easily understandable article. Chemotaxis is the basis of the movement of cells and microorganisms in biological environments, which is the cause of many vital biochemical and biological processes. This review attempts to summarize the available literature on single-component biomimetic and self-propelling microdroplet systems based on ionic liquids, which exhibit chemotaxis and spontaneously move in a determined direction by an external gradient, particularly a chemical change. It also aims to review artificial ionic liquid-based chemotaxis systems that can be used as drug carriers for medical purposes. The various ionic liquids used for this purpose are discussed, and different forms of chemical gradients and mechanisms that cause movement in microfluidic channels will be reviewed.


Assuntos
Quimiotaxia/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Líquidos Iônicos/farmacologia , Humanos , Microfluídica
8.
Anal Chem ; 93(35): 12032-12040, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34436859

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are emerging environmental pollutants of global concern. For rapid field site evaluation, there are very few sensitive, field-deployable analytical techniques. In this work, a portable lightweight capillary liquid chromatography (capLC) system was coupled with a small footprint portable mass spectrometer and configured for field-based applications. Further, an at-site ultrasound-assisted extraction (pUAE) methodology was developed and applied with a portable capLC/mass spectrometry (MS) system for on-site analysis of PFASs in real soil samples. The influential variables on the integration of capLC with MS and on the resolution and signal intensity of the capLC/MS setup were investigated. The important parameters affecting the efficiency of the pUAE method were also studied and optimized using the response surface methodology based on a central composite design. The mean recovery for 11 PFASs ranged between 70 and 110%, with relative standard deviations ranging from 3 to 12%. In-field method sensitivity for 12 PFASs ranged from 0.6 to 0.1 ng/g, with wide dynamic ranges (1-600 ng/g) and excellent linearities (R2 > 0.991). The in-field portable system was benchmarked against a commercial lab-based LC-tandem MS (MS/MS) system for the analysis of PFASs in real soil samples, with the results showing good agreement. When deployed to a field site, 12 PFASs were detected and identified in real soil samples at concentrations ranging from 8.1 ng/g (for perfluorooctanesulfonic acid) to 2935.0 ng/g (perfluorohexanesulfonic acid).


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Cromatografia Líquida , Fluorocarbonos/análise , Solo , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
9.
Anal Bioanal Chem ; 413(12): 3243-3251, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33751164

RESUMO

Recent development of portable three-dimensional printed (3DP) microfluidic-based devices has provided a new horizon for real-time field analysis of environmental pollutants. Smartphones with the possibility of launching different software, sensing, and grading color intensity, as well as capability of sending/receiving data through the internet have made this technology very promising. Here, a novel smartphone-based 3DP microfluidic device is reported that uses an image-based colorimetric detection method for the analysis of uranium in water samples, based on the complex formation of uranyl ions with Arsenazo III. The microfluidic device consists of two horizontal channels, separated by an integrated porous membrane, and was printed in a single run using a transparent photopolymer. It enables the operator to see the internal parts and the color change visually, as well as enables the operator to take images and record the color intensity using a smartphone. In each 3DP run, 220 devices are fabricated in 1.5 h (~ 25 s per device) at an estimated price of $2.5 per device. A Box-Behnken design (BBD) was utilized for the optimization of experimental conditions. The calibration curve was linear within 0.5-100 µg mL-1 (R2 > 0.9925) of uranium analysis. The total time of each experiment was approximately 8 min. The 3DP device was successfully employed for the recovery and determination of uranium in spiked natural water samples.

10.
J Sep Sci ; 44(6): 1130-1139, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32627944

RESUMO

Nanoporosity, crystal structure, good thermal and mechanical stability, high surface-to-volume ratio, nanoscale cavities, and uniform pore topology have made metal-organic frameworks one of the best class of sorbents for adsorption/separation purposes. In this research, a metal-organic framework/polyaniline magnetite nanocomposite was synthesized and intercalated by polyaniline by electrophoretic deposition on the surface of a thin steel wire, to prepare a solid-phase microextraction fiber. It was coupled with gas chromatography-flame ionization detection and employed for the extraction and determination of aldehydes in biological samples. The magnetic nanocomposite was characterized using scanning electron microscopy, energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy. Under the optimal experimental conditions, the calibration curves were linear in the range of 0.01-1 and 0.1-1 µg/L for hexanal and heptanal, respectively. The limits of detections for hexanal and heptanal were 0.001 and 0.01 µg/L, respectively. Intrafiber repeatability for six replicate analyses of 0.2 µg/L of the analytes was over the range 3.5-7.1%. Interfiber (fiber-to-fiber) reproducibility, calculated by six replicate analyses of the same concentration using three different fibers, and was found to be 10.4-15.7%. The developed procedure was successfully utilized for the analysis of hexanal and heptanal in human plasma and urine samples.


Assuntos
Aldeídos/análise , Compostos de Anilina/química , Líquidos Corporais/química , Estruturas Metalorgânicas/química , Nanocompostos/química , Microextração em Fase Sólida , Humanos , Fenômenos Magnéticos , Estruturas Metalorgânicas/síntese química , Tamanho da Partícula , Propriedades de Superfície
11.
Analyst ; 145(21): 6928-6936, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32844824

RESUMO

The combination of a thread-based electrofluidic analytical device and desorption electrospray ionization mass-spectrometry (DESI-MS) was investigated for the separation and concentration of proteins. The combination delivered a low-cost novel approach for sample pretreatment and target focusing, with direct "on-thread" ambient mass spectrometry detection. For this purpose, a platform for thread-based isoelectric focusing (TB-IEF) was 3D-printed, optimised, and applied to the separation and focusing of three model proteins. Successful separation and focusing was achieved within 30 min. The TB-IEF device was coupled with DESI-MS by direct exposure of the focused solutes on the dried thread to the DESI source. As a proof-of-concept, a 10-fold increase in the DESI-MS response for insulin was achieved following the TB-IEF preconcentration, whilst simultaneously isolating the target solutes from their sample matrix.

12.
Molecules ; 25(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028571

RESUMO

The performance of headspace solid-phase microextraction (HS-SPME) was upgraded by easy and low-cost preparation of a new nanocomposite fiber. A polypyrrole/chromium-based metal-organic framework, PPy@MIL-101(Cr), nanocomposite was electrochemically synthesized and simultaneously coated on a steel wire as a microextraction sorbent. The morphology and chemical structure of the prepared nanocomposite was characterized by Fourier-transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX) techniques. The microsorbent was used for sampling of methyl-tert-butyl ether (MTBE) in solid samples, through an HS-SPME sampling strategy, followed by GC-FID measurement. The optimal experimental conditions, including extraction temperature, extraction time, and GC desorption conditions, were evaluated and optimized. The proposed procedure showed good sensitivity (limit of detection was 0.01 ng·g-1) and precision (relative standard deviation was 8.4% for six replicated analyses). The calibration curve was linear over the range of 5-40,000 ng·g-1, with a correlation coefficient of 0.994. The limit of quantification was 0.4 ng·g-1. The fabricated fiber exhibited good repeatability and reproducibility for the sampling of MTBE, with average recovery values of 88-114%. The intra-fiber and inter-fiber precisions were found to be 8.4% and 19%, respectively. The results demonstrated the superiority of the PPy@MIL-101(Cr)-coated fiber in comparison with handmade (polypyrrole, PPY) and commercial fibers (polyacrylate, PA; polydimethylsiloxane, PDMS; and divinylbenzene/carboxen/polydimethylsiloxane, DVB/CAR/PDMS) for the analysis of solid samples. The developed method was successfully employed for the analysis of MTBE in different soil samples contaminated by oil products.


Assuntos
Cromo , Estruturas Metalorgânicas , Éteres Metílicos , Nanocompostos , Polímeros , Pirróis , Solo , Cromo/química , Microextração em Fase Líquida , Estruturas Metalorgânicas/química , Éteres Metílicos/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Polímeros/química , Pirróis/química , Solo/química , Poluentes do Solo , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Anal Chem ; 91(3): 1752-1757, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30582787

RESUMO

Analyte focusing by micelle to cyclodextrin stacking (MCDS) in micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) and fused silica capillaries is demonstrated for neutral, cationic, and chiral analytes. The stacking was at a dynamic boundary formed between the injected charged SDS micelles and neutral γ-cyclodextrin (γ-CD) zones, where the analytes bound inside micelles were released due to the formation of stable SDS-CD inclusion complexes. The complex formation reduced or eliminated the affinity of the analytes to the micellar phase. There was reversal (for charged) or nulling (for neutrals) of the analyte's effective electrophoretic mobility that caused the analytes to accumulate at the boundary. Under the conditions where the SDS micelles velocity is faster than the electroosmotic flow (using acidic buffer), MCDS was conducted by injection of a long plug of sample in a micellar diluent after injection of a CD solution plug into a capillary that was filled with MEKC background solution. By simply extending the length of the CD plug, chiral separations of chlorpheniramine and phenoxyacid herbicides were achieved without optimizing the MEKC conditions. The analytical figures of merit including linearity and repeatability for the tested compounds were found acceptable, and the sensitivity enhancement factors were up to 171. The stacking strategy in MEKC was applied to metabolic stability studies of small molecules with HepG2 cell line, where the samples were only treated with acetonitrile and then diluted with the micellar diluent (demonstrating the reduction of tedious sample preparation requirements for biological samples prior to chemical analysis).

14.
Electrophoresis ; 40(1): 17-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362581

RESUMO

One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.


Assuntos
Eletroforese Capilar , Animais , Biomarcadores/análise , Linhagem Celular , Fracionamento Químico , Humanos , Concentração de Íons de Hidrogênio , Isotacoforese , Camundongos , Micelas , Sensibilidade e Especificidade
15.
Biomed Chromatogr ; 31(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28618092

RESUMO

The surface of a stainless steel fiber was made larger, porous and cohesive by platinizing for tight attachment of its coating. Then it was coated by a polyaniline/polypyrrole/graphene oxide (PANI/PP/GO) nanocomposite film using electrochemical polymerization. The prepared PANI/PP/GO fiber was used for headspace solid-phase microextraction (HS-SPME) of linear aliphatic aldehydes in rice samples followed by GC-FID determination. To achieve the highest extraction efficiency, various experimental parameters including extraction time and temperature, matrix modifier and desorption condition were studied. The linear calibration curves were obtained over the range of 0.05-20 µg g-1 (R2 > 0.99) for C4 -C11 aldehydes. The limits of detection were found to be in the range of 0.01-0.04 µg g-1 . RSD values were calculated to be <7.4 and 10.7% for intra- and inter-day, respectively. The superiority of the prepared nanocomposite SPME fiber was established by comparison of its results with those obtained by polydimethylsiloxane, carbowax-divinylbenzene, divinylbenzene-carboxen-polydimethylsiloxane and polyacrylate commercial ones. Finally, the nanocomposite fiber was used to extract and determine linear aliphatic aldehydes in 18 rice samples.


Assuntos
Aldeídos/isolamento & purificação , Grafite/química , Nanocompostos/química , Oryza/química , Microextração em Fase Sólida/métodos , Aço Inoxidável/química , Aldeídos/química , Compostos de Anilina/química , Cromatografia Gasosa , Limite de Detecção , Modelos Lineares , Polímeros/química , Pirróis/química , Reprodutibilidade dos Testes
16.
J Chromatogr A ; 1714: 464562, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38065025

RESUMO

In-situ electropolymerization of conductive polymers on the surface of stainless-steel substrates is a well-established but promising procedure for the preparation of solid-phase microextraction (SPME) tools. Herein, different electrochemical methods including constant potential (CP), constant potential pulse (CPP), and cyclic voltammetry (CV) were utilized to fabricate SPME fibers by in-situ electropolymerization of pyrrole-dopamine copolymers (PPY/PDA) on the surface of stainless-steel fibers. The coated fibers were characterized and applied for the direct-immersion SPME (DI-SPME) sampling of ultra-trace amounts of plant hormones including abscisic acid (ABA), gibberellic acid (GA3), and indole acetic acid (IAA) in fruit juices, followed by HPLC-UV determination. The results showed that CV electropolymerization is significantly more efficient than the two other methods. The coatings created by the CV method were satisfactorily uniform, adhesive, and durable and exhibited higher extraction performance compared to the CP and CPP procedures. The important experimental variables of the proposed DI-SPME-HPLC method were evaluated and optimized using response surface methodology with a Box-Behnken design. The developed method showed wide-range linearities, spanning from 0.05 to 20µg mL-1 for GA3, and 0.02 to 20µg mL-1 for ABA and IAA. The limits of detection were obtained 0.01µg mL-1 for GA3, and 0.005µg mL-1 for ABA and IAA. The fiber was successfully employed for the simultaneous DI-SPME-HPLC analysis of plant hormones in fruit juice samples.


Assuntos
Dopamina , Microextração em Fase Sólida , Microextração em Fase Sólida/métodos , Pirróis/química , Reguladores de Crescimento de Plantas , Polímeros/química , Aço Inoxidável/química
17.
Food Chem ; 449: 139168, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574521

RESUMO

A robust biocompatible solid-phase microextraction (SPME) fiber, so-called Ti/APTS/GA/CS, was prepared by chemical bonding of cross-linked glutaraldehyde-chitosan to the surface of a titanium wire using APTS. The fiber was applied for sampling of phytohormones in plant tissues, followed by HPLC-UV analysis. The structure and morphology of the fiber coating was investigated by FT-IR, SEM, EDX, XRD, and TGA techniques. A Box-Behnken design was implemented to optimize the experimental variables. The calibration graphs were linear over a wide linear range (0.5-200 µg L-1) with LODs over the range of 0.01-0.06 µg L-1. The intra-day and inter-day precisions were found to be 1.3-6.3% and 4.3-7.3%, respectively. The matrix effect values ranged from 86.5% to 111.7%, indicating that the complex sample matrices had an insignificant effect on the determination of phytohormones. The fiber was successfully employed for the direct-immersion SPME (DI-SPME-HPLC) analysis of the phytohormones in cucumber, tomato, date palm, and calendula samples.


Assuntos
Quitosana , Glutaral , Reguladores de Crescimento de Plantas , Microextração em Fase Sólida , Titânio , Quitosana/química , Titânio/química , Glutaral/química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/análise , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química
18.
J Chromatogr A ; 1725: 464949, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688054

RESUMO

This study introduces an innovative needle trap device (NTD) featuring a molecularly imprinted polymer (MIP) surface-modified Zeolite Y. The developed NTD was integrated with gas chromatography-flame ionization detector (GC-FID) and employed for analysis of fuel ether oxygenates (methyl tert­butyl ether, MTBE, ethyl tert­butyl ether, ETBE, and tert­butyl formate, TBF) in urine samples. To optimize the key experimental variables including extraction temperature, extraction time, salt concentration, and stirring speed, a central composite design-response surface methodology (CCD-RSM) was employed. The optimal values for extraction in the study were found to be 51.2 °C extraction temperature, 46.2 min extraction time, 27 % salt concentration, and 620 rpm stirring speed. Under the optimized conditions, the calibration curves demonstrated excellent linearity within the range of 0.1-100 µg L-1, with correlation coefficients (R2) exceeding 0.99. The limits of detection (LODs) for MTBE, ETBE, and TBF were obtained 0.06, 0.08, and 0.09 µg L-1, respectively. Moreover, the limits of quantification (LOQs) for MTBE, ETBE, and TBF were obtained 0.18, 0.24, and 0.27 µg L-1, respectively. The enrichment factor was also found to be in the range of 98-129.The NTD-GC-FID procedure demonstrated a high extraction efficiency, making it a promising tool for urinary biomonitoring of fuel ether oxygenates with improved sensitivity and selectivity compared to current methods.


Assuntos
Limite de Detecção , Éteres Metílicos , Zeolitas , Zeolitas/química , Humanos , Éteres Metílicos/urina , Éteres Metílicos/química , Polímeros Molecularmente Impressos/química , Monitoramento Biológico/métodos , Cromatografia Gasosa/métodos , Etil-Éteres/urina , Etil-Éteres/química
19.
Food Chem ; 442: 138455, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271905

RESUMO

The study was performed in two phases. First, the polymerization was carried out upon three magnetized surfaces of silica aerogel, zeolite Y, and MIL-101(Cr). Then, optimal molecularly imprinted polymer and optimal extraction conditions were determined by the central composite design-response surface method. Subsequently, the validation parameters of dispersive solid-phase extraction based optimal molecularly imprinted polymer were examined for the extraction of the fuel ether oxygenates. The optimal conditions include the type of adsorbent: Zeolite-magnetic molecularly imprinted polymer, the amount of adsorbent: 40 mg, pH: 7.7, and absorption time: 24.8 min which was selected with desirability equal to 0.996. The calibration graphs were linear between 1 and 100 µg L-1, with good correlation coefficients. The limits of detection were found to be 0.64, 0. 4, and 0.34 µg L-1 for methyl tert-butyl ether, ethyl tert-butyl ether, and tert butyl formate, respectively. The method proved reliable for analyzing fuel ether oxygenates in drinking water.


Assuntos
Água Potável , Estruturas Metalorgânicas , Impressão Molecular , Zeolitas , Polímeros Molecularmente Impressos , Dióxido de Silício , Éter , Polímeros , Extração em Fase Sólida , Éteres , Fenômenos Magnéticos , Impressão Molecular/métodos
20.
Talanta ; 274: 126031, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574536

RESUMO

Real-time monitoring of nitrite and nitrate is crucial for maintaining soil health and promoting plant growth. In this study, a portable ion-chromatograph (IC, Aquamonitrix) analyser, coupled with a field-applicable ultrasonic-assisted extraction method, was utilised for in-field determination of nitrate and nitrite in soils. This is the first application of this type of analyser to soil nutrients. On-site analysis of soil from a local sports field showed 94.8 ± 4.3 µg g-1 nitrate, with LODs of 32.0 µg g-1 for nitrate and 5.4 µg g-1 for nitrite. The results were in close agreement with those obtained using a conventional lab-based IC. Relative standard deviations (%RSDs) for soil analysis using Aquamonitrix were consistently below 10%. The obtained average recoveries of samples spiked with nitrite were 100% and 104% for the portable IC and conventional IC, respectively. Furthermore, to assess the suitability of portable IC for samples with high organic matter content, various natural organic fertilisers were extracted and analysed. The results showed 16.2 ± 0.7 µg g-1 nitrite and 28.5 ± 5.6 µg g-1 nitrate in sheep manure samples with LODs of 2.0 µg g-1 for nitrite and 12.0 µg g-1 for nitrate. The portable IC system was further demonstrated via real-time on-site analysis of soil pore-water acquired using a portable battery-based ceramic pore-water sampler. A continuous increase in nitrate concentration over time was observed (from 80 to 148 µg mL-1) in the soil pore-water in a vegetable garden four days after heavy rain. Unlike conventionally sampled natural waters, 7-day storage of the studied pore water samples revealed no changes in nitrate concentrations. An average of 558 ± 51 µg mL-1 nitrate was detected in the soil pore-water samples analysed on a spinach farm, immediately after irrigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA