Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep Methods ; 3(3): 100415, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056376

RESUMO

Quantifying animal behavior is important for biological research. Identifying behaviors is the prerequisite of quantifying them. Current computational tools for behavioral quantification typically use high-level properties such as body poses to identify the behaviors, which constrains the information available for a holistic assessment. Here we report LabGym, an open-source computational tool for quantifying animal behaviors without this constraint. In LabGym, we introduce "pattern image" to represent the animal's motion pattern, in addition to "animation" that shows all spatiotemporal details of a behavior. These two pieces of information are assessed holistically by customizable deep neural networks for accurate behavior identifications. The quantitative measurements of each behavior are then calculated. LabGym is applicable for experiments involving multiple animals, requires little programming knowledge to use, and provides visualizations of behavioral datasets. We demonstrate its efficacy in capturing subtle behavioral changes in diverse animal species.


Assuntos
Comportamento Animal , Redes Neurais de Computação , Animais , Computadores , Movimento (Física)
2.
Cells ; 11(19)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36231095

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder showing progressive neuronal loss in several brain areas and a broad spectrum of motor and non-motor symptoms, including ataxia and altered sleep. While sleep disturbances are known to play pathophysiologic roles in other neurodegenerative disorders, their impact on SCA3 is unknown. Using spectrographic measurements, we sought to quantitatively characterize sleep electroencephalography (EEG) in SCA3 transgenic mice with confirmed disease phenotype. We first measured motor phenotypes in 18-31-week-old homozygous SCA3 YACMJD84.2 mice and non-transgenic wild-type littermate mice during lights-on and lights-off periods. We next implanted electrodes to obtain 12-h (zeitgeber time 0-12) EEG recordings for three consecutive days when the mice were 26-36 weeks old. EEG-based spectroscopy showed that compared to wild-type littermates, SCA3 homozygous mice display: (i) increased duration of rapid-eye movement sleep (REM) and fragmentation in all sleep and wake states; (ii) higher beta power oscillations during REM and non-REM (NREM); and (iii) additional spectral power band alterations during REM and wake. Our data show that sleep architecture and EEG spectral power are dysregulated in homozygous SCA3 mice, indicating that common sleep-related etiologic factors may underlie mouse and human SCA3 phenotypes.


Assuntos
Doença de Machado-Joseph , Animais , Modelos Animais de Doenças , Eletroencefalografia , Humanos , Doença de Machado-Joseph/genética , Camundongos , Camundongos Transgênicos , Sono/fisiologia
3.
Behav Brain Res ; 409: 113323, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33910028

RESUMO

There is high clinical interest in improving the pharmacological treatment of individuals with Major Depressive Disorder (MDD). This neuropsychiatric disorder continues to cause significant morbidity and mortality worldwide, where existing pharmaceutical treatments such as selective serotonin reuptake inhibitors often have limited efficacy. In a recent publication, we demonstrated an antidepressant-like role for the acetylcholinesterase inhibitor (AChEI) donepezil in the C57BL/6J mouse forced swim test (FST). Those data added to a limited literature in rodents and human subjects which suggests AChEIs have antidepressant properties, but added the novel finding that donepezil only showed antidepressant-like properties at lower doses (0.02, 0.2 mg/kg). At a high dose (2.0 mg/kg), donepezil tended to promote depression-like behavior, suggesting a u-shaped dose-response curve for FST immobility. Here we investigate the effects of three other AChEIs with varying molecular structures: galantamine, physostigmine, and rivastigmine, to test whether they also exhibit antidepressant-like effects in the FST. We find that these drugs do exhibit therapeutic-like effects at low but not high doses, albeit at lower doses for physostigmine. Further, we find that their antidepressant-like effects are not mediated by generalized hyperactivity in the novel open field test, and are also not accompanied by anxiolytic-like properties. These data further support the hypothesis that acetylcholine has a u-shaped dose-response relationship with immobility in the C57BL/6J mouse FST, and provide a rationale for more thoroughly investigating whether reversible AChEIs as a class can be repurposed for the treatment of MDD in human subjects.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Atividade Motora/efeitos dos fármacos , Animais , Aprendizagem por Associação/efeitos dos fármacos , Inibidores da Colinesterase/administração & dosagem , Donepezila/farmacologia , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Galantamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fisostigmina/farmacologia , Rivastigmina/farmacologia , Natação
4.
Transl Psychiatry ; 10(1): 255, 2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32712627

RESUMO

Finding new antidepressant agents is of high clinical priority given that many cases of major depressive disorder (MDD) do not respond to conventional monoaminergic antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants, and monoamine oxidase inhibitors. Recent findings of effective fast-acting antidepressants indicate that there are biological substrates to be taken advantage of for fast relief of depression and that we may find further treatments in this category. In this vein, the cholinergic system may be a relatively overlooked target for antidepressant medications, given its major role in motivation and attention. Furthermore, the classically engaged monoaminergic neurotransmitter systems in depression treatment-serotonin, norepinephrine, and dopamine-interact directly at times with cholinergic signaling. Here we investigate in greater detail how the cholinergic system may impact depression-related behavior, by administering widely ranging doses of the cholinesterase inhibitor drug, donepezil, to C57BL/6J mice in the forced swim test. First, we confirm prior findings that this drug, which is thought to boost synaptic acetylcholine, promotes depression-like behavior at a high dose (2.0 mg/kg, i.p.). But we also find paradoxically that it has an antidepressant-like effect at lower doses (0.02 and 0.2 mg/kg). Further this antidepressant-like effect is not due to generalized hyperactivity, since we did not observe increased locomotor activity in the open field test. These data support a novel antidepressant-like role for donepezil at lower doses as part of an overall u-shaped dose-response curve. This raises the possibility that donepezil could have antidepressant properties in humans suffering from MDD.


Assuntos
Inibidores da Colinesterase , Transtorno Depressivo Maior , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inibidores da Colinesterase/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Donepezila , Camundongos , Camundongos Endogâmicos C57BL
5.
Front Behav Neurosci ; 14: 620119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519395

RESUMO

When stress becomes chronic it can trigger lasting brain and behavioral changes including Major Depressive Disorder (MDD). There is conflicting evidence regarding whether acetylcholinesterase inhibitors (AChEIs) may have antidepressant properties. In a recent publication, we demonstrated a strong dose-dependency of the effect of AChEIs on antidepressant-related behavior in the mouse forced swim test: whereas the AChEI donepezil indeed promotes depression-like behavior at a high dose, it has antidepressant-like properties at lower doses in the same experiment. Our data therefore suggest a Janus-faced dose-response curve for donepezil in depression-related behavior. In this review, we investigate the mood-related properties of AChEIs in greater detail, focusing on both human and rodent studies. In fact, while there have been many studies showing pro-depressant activity by AChEIs and this is a major concept in the field, a variety of other studies in both humans and rodents show antidepressant effects. Our study was one of the first to systematically vary dose to include very low concentrations while measuring behavioral effects, potentially explaining the apparent disparate findings in the field. The possibility of antidepressant roles for AChEIs in rodents may provide hope for new depression treatments. Importantly, MDD is a psychosocial stress-linked disorder, and in rodents, stress is a major experimental manipulation for studying depression mechanisms, so an important future direction will be to determine the extent to which these depression-related effects are stress-sensitive. In sum, gaining a greater understanding of the potentially therapeutic mood-related effects of low dose AChEIs, both in rodent models and in human subjects, should be a prioritized topic in ongoing translational research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA