Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Virology ; 597: 110129, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908046

RESUMO

Group A rotaviruses (RVAs) are major causes of severe gastroenteritis in infants and young animals. To enhance our understanding of the relationship between human and animals RVAs, complete genome data are necessary. We screened 92 intestinal and stool samples from diarrheic piglets by RT‒PCR targeting the VP6 gene, revealing a prevalence of 10.9%. RVA was confirmed in two out of 5 calf samples. We successfully isolated two porcine samples using MA104 cell line. The full-length genetic constellation of the two isolates were determined to be G9-P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1, with close similarity to human Wa-like and porcine strains. Sequence analysis revealed the majority of genes were closely related to porcine and human RVAs. Phylogenetic analysis revealed that these isolates might have their ancestral origin from pigs, although some of their gene segments were related to human strains. This study reveals evidence of reassortment and possible interspecies transmission between pigs and humans in China.


Assuntos
Genoma Viral , Filogenia , Infecções por Rotavirus , Rotavirus , Doenças dos Suínos , Animais , Rotavirus/genética , Rotavirus/isolamento & purificação , Rotavirus/classificação , Suínos , Infecções por Rotavirus/virologia , Infecções por Rotavirus/veterinária , Infecções por Rotavirus/transmissão , Infecções por Rotavirus/epidemiologia , Humanos , China/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/epidemiologia , Bovinos , Fezes/virologia , Sequenciamento Completo do Genoma , Genótipo , Diarreia/virologia , Diarreia/veterinária , Diarreia/epidemiologia , Linhagem Celular , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/classificação
2.
Virus Res ; 340: 199303, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38145807

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that mainly causes acute diarrhea/vomiting, dehydration, and mortality in piglets, possessing economic losses and public health concerns. However, there are currently no proven effective antiviral agents against PDCoV. Cepharanthine (CEP) is a naturally occurring alkaloid used as a traditional remedy for radiation-induced symptoms, but its underlying mechanism of CEP against PDCoV has remained elusive. The aim of this study was to investigate the anti-PDCoV effects and mechanisms of CEP in LLC-PK1 cells. The results showed that the antiviral activity of CEP was based on direct action on cells, preventing the virus from attaching to host cells and virus replication. Importantly, Surface Plasmon Resonance (SPR) results showed that CEP has a moderate affinity to PDCoV receptor, porcine aminopeptidase N (pAPN) protein. AutoDock predicted that CEP can form hydrogen bonds with amino acid residues (R740, N783, and R790) in the binding regions of PDCoV and pAPN. In addition, RT-PCR results showed that CEP treatment could significantly reduce the transcription of ZBP1, cytokine (IL-1ß and IFN-α) and chemokine genes (CCL-2, CCL-4, CCL-5, CXCL-2, CXCL-8, and CXCL-10) induced by PDCoV. Western blot analysis revealed that CEP could inhibit viral replication by inducing autophagy. In conclusion, our results suggest that the anti-PDCoV activity of CEP is not only relies on competing the virus binding with pAPN, but also affects the proliferation of the virus in vitro by downregulating the excessive immune response caused by the virus and inducing autophagy. CEP emerges as a promising candidate for potential anti-PDCoV therapeutic development.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Infecções por Coronavirus , Coronavirus , Deltacoronavirus , Doenças dos Suínos , Animais , Suínos , Coronavirus/genética , Antígenos CD13/metabolismo
3.
Vet Microbiol ; 297: 110210, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39128433

RESUMO

The Porcine reproductive and respiratory syndrome (PRRS) causes severe financial losses to the global swine industry. Due to continuous virus evolution, the protection against the PRRS provided by current vaccines is limited. In order to find new antiviral strategies, this study investigated the antiviral potential of antimicrobial peptides (AMPs) against PRRSV. Given the diversity of PRRSV strains and the limited effectiveness of existing vaccines in controlling PRRSV, this study evaluated the inhibitory effects of KLAK, Cecropin B, Piscidin1, and Caerin1.1 on 3 strains of PRRSV (lineage 5 classical strain, lineage 8 highly pathogenic strain, and lineage 1 NADC30-like strain). Caerin1.1 exhibited significant dose-dependent antiviral activity, with an effective concentration (EC50) of 7.5 µM. Caerin1.1 effectively inhibited PRRSV replication when added before or in early infection but showed reduced effectiveness when added in late infection, indicating its potential involvement in targeting early transcription mechanisms of viral RNA polymerase and significantly upregulating cytokine gene expression. In the NADC30 strain-based animal infection model, Caerin1.1 treatment significantly reduced lung viral loads and inflammation in the lungs of PRRSV-infected pigs, with a mortality rate of 0 % (0/5) in the treated group compared to 66.67 % (4/6) in the untreated group, indicating a reduction in the mortality rate. Additionally, compared with the untreated group, the Caerin1.1-treated group showed significant improvements, such as lighter fever, more daily weight gain, less clinical symptoms, less viral load in blood, and less virus oral shedding (P < 0.05). These findings reveal the potential of antimicrobial peptides as PRRSV therapeutic agents and suggest that Caerin1.1 is a promising candidate for a novel anti-PRRSV drug.

4.
Int J Biol Macromol ; 268(Pt 2): 131839, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663699

RESUMO

Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Apoptose , Células Endoteliais , Proteínas Hemolisinas , Streptococcus suis , Streptococcus suis/patogenicidade , Streptococcus suis/metabolismo , Humanos , Animais , Apoptose/efeitos dos fármacos , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/microbiologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Virulência , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA