Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Care ; 26(1): 341, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335405

RESUMO

BACKGROUND: Sepsis is a severe systemic inflammatory response to infections that is accompanied by organ dysfunction and has a high mortality rate in adult intensive care units. Most genetic studies have identified gene variants associated with development and outcomes of sepsis focusing on biological candidates. We conducted the first genome-wide association study (GWAS) of 28-day survival in adult patients with sepsis. METHODS: This study was conducted in two stages. The first stage was performed on 687 European sepsis patients from the GEN-SEP network and 7.5 million imputed variants. Association testing was conducted with Cox regression models, adjusting by sex, age, and the main principal components of genetic variation. A second stage focusing on the prioritized genetic variants was performed on 2,063 ICU sepsis patients (1362 European Americans and 701 African-Americans) from the MESSI study. A meta-analysis of results from the two stages was conducted and significance was established at p < 5.0 × 10-8. Whole-blood transcriptomic, functional annotations, and sensitivity analyses were evaluated on the identified genes and variants. FINDINGS: We identified three independent low-frequency variants associated with reduced 28-day sepsis survival, including a missense variant in SAMD9 (hazard ratio [95% confidence interval] = 1.64 [1.37-6.78], p = 4.92 × 10-8). SAMD9 encodes a possible mediator of the inflammatory response to tissue injury. INTERPRETATION: We performed the first GWAS of 28-day sepsis survival and identified novel variants associated with reduced survival. Larger sample size studies are needed to better assess the genetic effects in sepsis survival and to validate the findings.


Assuntos
Estudo de Associação Genômica Ampla , Sepse , Adulto , Humanos , Estudo de Associação Genômica Ampla/métodos , População Branca , Sepse/genética , Negro ou Afro-Americano , Polimorfismo de Nucleotídeo Único , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
N Engl J Med ; 388(18): 1702-1707, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37133589
3.
Crit Care Med ; 47(11): 1477-1484, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31135500

RESUMO

OBJECTIVE: To assess clinician perceptions of a machine learning-based early warning system to predict severe sepsis and septic shock (Early Warning System 2.0). DESIGN: Prospective observational study. SETTING: Tertiary teaching hospital in Philadelphia, PA. PATIENTS: Non-ICU admissions November-December 2016. INTERVENTIONS: During a 6-week study period conducted 5 months after Early Warning System 2.0 alert implementation, nurses and providers were surveyed twice about their perceptions of the alert's helpfulness and impact on care, first within 6 hours of the alert, and again 48 hours after the alert. MEASUREMENTS AND MAIN RESULTS: For the 362 alerts triggered, 180 nurses (50% response rate) and 107 providers (30% response rate) completed the first survey. Of these, 43 nurses (24% response rate) and 44 providers (41% response rate) completed the second survey. Few (24% nurses, 13% providers) identified new clinical findings after responding to the alert. Perceptions of the presence of sepsis at the time of alert were discrepant between nurses (13%) and providers (40%). The majority of clinicians reported no change in perception of the patient's risk for sepsis (55% nurses, 62% providers). A third of nurses (30%) but few providers (9%) reported the alert changed management. Almost half of nurses (42%) but less than a fifth of providers (16%) found the alert helpful at 6 hours. CONCLUSIONS: In general, clinical perceptions of Early Warning System 2.0 were poor. Nurses and providers differed in their perceptions of sepsis and alert benefits. These findings highlight the challenges of achieving acceptance of predictive and machine learning-based sepsis alerts.


Assuntos
Algoritmos , Atitude do Pessoal de Saúde , Sistemas de Apoio a Decisões Clínicas , Aprendizado de Máquina , Sepse/diagnóstico , Choque Séptico/diagnóstico , Diagnóstico por Computador , Registros Eletrônicos de Saúde , Hospitais de Ensino , Humanos , Corpo Clínico Hospitalar , Recursos Humanos de Enfermagem Hospitalar , Padrões de Prática em Enfermagem/estatística & dados numéricos , Padrões de Prática Médica/estatística & dados numéricos , Estudos Prospectivos , Envio de Mensagens de Texto
4.
Crit Care Med ; 47(11): 1485-1492, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31389839

RESUMO

OBJECTIVES: Develop and implement a machine learning algorithm to predict severe sepsis and septic shock and evaluate the impact on clinical practice and patient outcomes. DESIGN: Retrospective cohort for algorithm derivation and validation, pre-post impact evaluation. SETTING: Tertiary teaching hospital system in Philadelphia, PA. PATIENTS: All non-ICU admissions; algorithm derivation July 2011 to June 2014 (n = 162,212); algorithm validation October to December 2015 (n = 10,448); silent versus alert comparison January 2016 to February 2017 (silent n = 22,280; alert n = 32,184). INTERVENTIONS: A random-forest classifier, derived and validated using electronic health record data, was deployed both silently and later with an alert to notify clinical teams of sepsis prediction. MEASUREMENT AND MAIN RESULT: Patients identified for training the algorithm were required to have International Classification of Diseases, 9th Edition codes for severe sepsis or septic shock and a positive blood culture during their hospital encounter with either a lactate greater than 2.2 mmol/L or a systolic blood pressure less than 90 mm Hg. The algorithm demonstrated a sensitivity of 26% and specificity of 98%, with a positive predictive value of 29% and positive likelihood ratio of 13. The alert resulted in a small statistically significant increase in lactate testing and IV fluid administration. There was no significant difference in mortality, discharge disposition, or transfer to ICU, although there was a reduction in time-to-ICU transfer. CONCLUSIONS: Our machine learning algorithm can predict, with low sensitivity but high specificity, the impending occurrence of severe sepsis and septic shock. Algorithm-generated predictive alerts modestly impacted clinical measures. Next steps include describing clinical perception of this tool and optimizing algorithm design and delivery.


Assuntos
Algoritmos , Sistemas de Apoio a Decisões Clínicas , Diagnóstico por Computador , Aprendizado de Máquina , Sepse/diagnóstico , Choque Séptico/diagnóstico , Estudos de Coortes , Registros Eletrônicos de Saúde , Hospitais de Ensino , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Envio de Mensagens de Texto
5.
Crit Care Clin ; 40(3): 561-581, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796228

RESUMO

Early warning systems (EWSs) are designed and deployed to create a rapid assessment and response for patients with clinical deterioration outside the intensive care unit (ICU). These models incorporate patient-level data such as vital signs and laboratory values to detect or prevent adverse clinical events, such as vital signs and laboratories to allow detection and prevention of adverse clinical events such as cardiac arrest, intensive care transfer, or sepsis. The applicability, development, clinical utility, and general perception of EWS in clinical practice vary widely. Here, we review the field as it has grown from early vital sign-based scoring systems to contemporary multidimensional algorithms and predictive technologies for clinical decompensation outside the ICU.


Assuntos
Estado Terminal , Escore de Alerta Precoce , Humanos , Estado Terminal/terapia , Sinais Vitais , Unidades de Terapia Intensiva , Deterioração Clínica , Cuidados Críticos/métodos , Cuidados Críticos/normas , Algoritmos , Monitorização Fisiológica/métodos
6.
Intensive Care Med ; 48(9): 1144-1155, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35833959

RESUMO

PURPOSE: Although dozens of studies have associated vancomycin + piperacillin-tazobactam with increased acute kidney injury (AKI) risk, it is unclear whether the association represents true injury or a pseudotoxicity characterized by isolated effects on creatinine secretion. We tested this hypothesis by contrasting changes in creatinine concentration after antibiotic initiation with changes in cystatin C concentration, a kidney biomarker unaffected by tubular secretion. METHODS: We included patients enrolled in the Molecular Epidemiology of SepsiS in the ICU (MESSI) prospective cohort who were treated for ≥ 48 h with vancomycin + piperacillin-tazobactam or vancomycin + cefepime. Kidney function biomarkers [creatinine, cystatin C, and blood urea nitrogen (BUN)] were measured before antibiotic treatment and at day two after initiation. Creatinine-defined AKI and dialysis were examined through day-14, and mortality through day-30. Inverse probability of treatment weighting was used to adjust for confounding. Multiple imputation was used to impute missing baseline covariates. RESULTS: The study included 739 patients (vancomycin + piperacillin-tazobactam n = 297, vancomycin + cefepime n = 442), of whom 192 had cystatin C measurements. Vancomycin + piperacillin-tazobactam was associated with a higher percentage increase of creatinine at day-two 8.04% (95% CI 1.21, 15.34) and higher incidence of creatinine-defined AKI: rate ratio (RR) 1.34 (95% CI 1.01, 1.78). In contrast, vancomycin + piperacillin-tazobactam was not associated with change in alternative biomarkers: cystatin C: - 5.63% (95% CI - 18.19, 8.86); BUN: - 4.51% (95% CI - 12.83, 4.59); or clinical outcomes: dialysis: RR 0.63 (95% CI 0.31, 1.29); mortality: RR 1.05 (95%CI 0.79, 1.41). CONCLUSIONS: Vancomycin + piperacillin-tazobactam was associated with creatinine-defined AKI, but not changes in alternative kidney biomarkers, dialysis, or mortality, supporting the hypothesis that vancomycin + piperacillin-tazobactam effects on creatinine represent pseudotoxicity.


Assuntos
Injúria Renal Aguda , Antibacterianos , Combinação Piperacilina e Tazobactam , Vancomicina , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia , Adulto , Antibacterianos/efeitos adversos , Biomarcadores , Cefepima/efeitos adversos , Creatinina/sangue , Estado Terminal/terapia , Cistatina C/sangue , Quimioterapia Combinada , Humanos , Ácido Penicilânico/efeitos adversos , Combinação Piperacilina e Tazobactam/efeitos adversos , Estudos Prospectivos , Diálise Renal , Estudos Retrospectivos , Vancomicina/efeitos adversos
7.
Front Immunol ; 13: 834988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309299

RESUMO

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibited higher basal levels of activation measured by P-selectin surface expression and had poor functional reserve upon in vitro stimulation. To investigate this question in more detail, we developed an assay to assess the capacity of plasma from COVID-19 patients to activate platelets from healthy donors. Platelet activation was a common feature of plasma from COVID-19 patients and correlated with key measures of clinical outcome including kidney and liver injury, and APACHEIII scores. Further, we identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions. These data identified these potentially actionable pathways as central for platelet activation and/or vascular complications and clinical outcomes in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect.


Assuntos
Plaquetas/imunologia , COVID-19/imunologia , Complemento C5a/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/fisiologia , Tromboembolia/imunologia , Adulto , Aminopiridinas/farmacologia , Células Cultivadas , Feminino , Hospitalização , Humanos , Masculino , Morfolinas/farmacologia , Ativação Plaquetária , Pirimidinas/farmacologia , Índice de Gravidade de Doença , Transdução de Sinais , Quinase Syk/antagonistas & inibidores
8.
Crit Care Explor ; 4(12): e0800, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36479446

RESUMO

COVID-19 is a heterogenous disease. Biomarker-based approaches may identify patients at risk for severe disease, who may be more likely to benefit from specific therapies. Our objective was to identify and validate a plasma protein signature for severe COVID-19. DESIGN: Prospective observational cohort study. SETTING: Two hospitals in the United States. PATIENTS: One hundred sixty-seven hospitalized adults with COVID-19. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: We measured 713 plasma proteins in 167 hospitalized patients with COVID-19 using a high-throughput platform. We classified patients as nonsevere versus severe COVID-19, defined as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. We compared proteins measured at baseline between these two groups by logistic regression adjusting for age, sex, symptom duration, and comorbidities. We used lead proteins from dysregulated pathways as inputs for elastic net logistic regression to identify a parsimonious signature of severe disease and validated this signature in an external COVID-19 dataset. We tested whether the association between corticosteroid use and mortality varied by protein signature. One hundred ninety-four proteins were associated with severe COVID-19 at the time of hospital admission. Pathway analysis identified multiple pathways associated with inflammatory response and tissue repair programs. Elastic net logistic regression yielded a 14-protein signature that discriminated 90-day mortality in an external cohort with an area under the receiver-operator characteristic curve of 0.92 (95% CI, 0.88-0.95). Classifying patients based on the predicted risk from the signature identified a heterogeneous response to treatment with corticosteroids (p = 0.006). CONCLUSIONS: Inpatients with COVID-19 express heterogeneous patterns of plasma proteins. We propose a 14-protein signature of disease severity that may have value in developing precision medicine approaches for COVID-19 pneumonia.

9.
Crit Care Clin ; 37(4): 817-834, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34548135

RESUMO

Clinical risk factors alone fail to fully explain acute respiratory distress syndrome (ARDS) risk or ARDS death, suggesting that individual risk factors contribute. The goals of genomic ARDS studies include better mechanistic understanding, identifying dysregulated pathways that may be amenable to pharmacologic targeting, using genomic causal inference techniques to find measurable traits with meaning, and deconvoluting ARDS heterogeneity by proving reproducible subpopulations that may share a unique biology. This article discusses the latest advances in ARDS genomics, provides historical perspective, and highlights some of the ways that the coronavirus disease 2019 (COVID-19) pandemic is accelerating genomic ARDS research.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/terapia , Fatores de Risco , SARS-CoV-2
10.
medRxiv ; 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33532787

RESUMO

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. We developed three different protein arrays to measure hallmark IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers. Autoantibodies were identified in approximately 50% of patients, but in <15% of healthy controls. When present, autoantibodies largely targeted autoantigens associated with rare disorders such as myositis, systemic sclerosis and CTD overlap syndromes. Anti-nuclear antibodies (ANA) were observed in ∼25% of patients. Patients with autoantibodies tended to demonstrate one or a few specificities whereas ACA were even more prevalent, and patients often had antibodies to multiple cytokines. Rare patients were identified with IgG antibodies against angiotensin converting enzyme-2 (ACE-2). A subset of autoantibodies and ACA developed de novo following SARS-CoV-2 infection while others were transient. Autoantibodies tracked with longitudinal development of IgG antibodies that recognized SARS-CoV-2 structural proteins such as S1, S2, M, N and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. COVID-19 patients with one or more autoantibodies tended to have higher levels of antibodies against SARS-CoV-2 Nonstructural Protein 1 (NSP1) and Methyltransferase (ME). We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.

11.
Sci Immunol ; 6(57)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653907

RESUMO

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


Assuntos
COVID-19/imunologia , Ativação Linfocitária , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Envelhecimento/imunologia , Criança , Pré-Escolar , Feminino , Citometria de Fluxo , Humanos , Leucopenia/imunologia , Masculino , Adulto Jovem
12.
Nat Commun ; 12(1): 5417, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521836

RESUMO

COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Idoso , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Autoanticorpos/sangue , Autoantígenos/imunologia , Doenças do Tecido Conjuntivo/imunologia , Citocinas/imunologia , Feminino , Hospitalização , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/patogenicidade , Proteínas Virais/imunologia
13.
bioRxiv ; 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33972943

RESUMO

Patients with COVID-19 present with a wide variety of clinical manifestations. Thromboembolic events constitute a significant cause of morbidity and mortality in patients infected with SARS-CoV-2. Severe COVID-19 has been associated with hyperinflammation and pre-existing cardiovascular disease. Platelets are important mediators and sensors of inflammation and are directly affected by cardiovascular stressors. In this report, we found that platelets from severely ill, hospitalized COVID-19 patients exhibit higher basal levels of activation measured by P-selectin surface expression, and have a poor functional reserve upon in vitro stimulation. Correlating clinical features to the ability of plasma from COVID-19 patients to stimulate control platelets identified ferritin as a pivotal clinical marker associated with platelet hyperactivation. The COVID-19 plasma-mediated effect on control platelets was highest for patients that subsequently developed inpatient thrombotic events. Proteomic analysis of plasma from COVID-19 patients identified key mediators of inflammation and cardiovascular disease that positively correlated with in vitro platelet activation. Mechanistically, blocking the signaling of the FcγRIIa-Syk and C5a-C5aR pathways on platelets, using antibody-mediated neutralization, IgG depletion or the Syk inhibitor fostamatinib, reversed this hyperactivity driven by COVID-19 plasma and prevented platelet aggregation in endothelial microfluidic chamber conditions, thus identifying these potentially actionable pathways as central for platelet activation and/or vascular complications in COVID-19 patients. In conclusion, we reveal a key role of platelet-mediated immunothrombosis in COVID-19 and identify distinct, clinically relevant, targetable signaling pathways that mediate this effect. These studies have implications for the role of platelet hyperactivation in complications associated with SARS-CoV-2 infection. ONE-SENTENCE SUMMARY: The FcγRIIA and C5a-C5aR pathways mediate platelet hyperactivation in COVID-19.

14.
Nat Med ; 27(7): 1280-1289, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34017137

RESUMO

Patients with cancer have high mortality from coronavirus disease 2019 (COVID-19), and the immune parameters that dictate clinical outcomes remain unknown. In a cohort of 100 patients with cancer who were hospitalized for COVID-19, patients with hematologic cancer had higher mortality relative to patients with solid cancer. In two additional cohorts, flow cytometric and serologic analyses demonstrated that patients with solid cancer and patients without cancer had a similar immune phenotype during acute COVID-19, whereas patients with hematologic cancer had impairment of B cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses. Despite the impaired humoral immunity and high mortality in patients with hematologic cancer who also have COVID-19, those with a greater number of CD8 T cells had improved survival, including those treated with anti-CD20 therapy. Furthermore, 77% of patients with hematologic cancer had detectable SARS-CoV-2-specific T cell responses. Thus, CD8 T cells might influence recovery from COVID-19 when humoral immunity is deficient. These observations suggest that CD8 T cell responses to vaccination might provide protection in patients with hematologic cancer even in the setting of limited humoral responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias/imunologia , Idoso , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/complicações , COVID-19/mortalidade , Estudos de Coortes , Feminino , Neoplasias Hematológicas/complicações , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunofenotipagem , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Neoplasias/complicações , Modelos de Riscos Proporcionais , Estudos Prospectivos , SARS-CoV-2 , Taxa de Sobrevida
15.
Res Sq ; 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33564756

RESUMO

Cancer patients have increased morbidity and mortality from Coronavirus Disease 2019 (COVID-19), but the underlying immune mechanisms are unknown. In a cohort of 100 cancer patients hospitalized for COVID-19 at the University of Pennsylvania Health System, we found that patients with hematologic cancers had a significantly higher mortality relative to patients with solid cancers after accounting for confounders including ECOG performance status and active cancer status. We performed flow cytometric and serologic analyses of 106 cancer patients and 113 non-cancer controls from two additional cohorts at Penn and Memorial Sloan Kettering Cancer Center. Patients with solid cancers exhibited an immune phenotype similar to non-cancer patients during acute COVID-19 whereas patients with hematologic cancers had significant impairment of B cells and SARS-CoV-2-specific antibody responses. High dimensional analysis of flow cytometric data revealed 5 distinct immune phenotypes. An immune phenotype characterized by CD8 T cell depletion was associated with a high viral load and the highest mortality of 71%, among all cancer patients. In contrast, despite impaired B cell responses, patients with hematologic cancers and preserved CD8 T cells had a lower viral load and mortality. These data highlight the importance of CD8 T cells in acute COVID-19, particularly in the setting of impaired humoral immunity. Further, depletion of B cells with anti-CD20 therapy resulted in almost complete abrogation of SARS-CoV-2-specific IgG and IgM antibodies, but was not associated with increased mortality compared to other hematologic cancers, when adequate CD8 T cells were present. Finally, higher CD8 T cell counts were associated with improved overall survival in patients with hematologic cancers. Thus, CD8 T cells likely compensate for deficient humoral immunity and influence clinical recovery of COVID-19. These observations have important implications for cancer and COVID-19-directed treatments, immunosuppressive therapies, and for understanding the role of B and T cells in acute COVID-19.

17.
medRxiv ; 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32995826

RESUMO

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8 T cells that correlated with use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct and implicate CD8 T cells in clinical presentation and trajectory of MIS-C.

19.
J Clin Invest ; 127(6): 2081-2090, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504649

RESUMO

Targeted cancer therapies, which act on specific cancer-associated molecular targets, are predominantly inhibitors of oncogenic kinases. While these drugs have achieved some clinical success, the inactivation of kinase signaling via stimulation of endogenous phosphatases has received minimal attention as an alternative targeted approach. Here, we have demonstrated that activation of the tumor suppressor protein phosphatase 2A (PP2A), a negative regulator of multiple oncogenic signaling proteins, is a promising therapeutic approach for the treatment of cancers. Our group previously developed a series of orally bioavailable small molecule activators of PP2A, termed SMAPs. We now report that SMAP treatment inhibited the growth of KRAS-mutant lung cancers in mouse xenografts and transgenic models. Mechanistically, we found that SMAPs act by binding to the PP2A Aα scaffold subunit to drive conformational changes in PP2A. These results show that PP2A can be activated in cancer cells to inhibit proliferation. Our strategy of reactivating endogenous PP2A may be applicable to the treatment of other diseases and represents an advancement toward the development of small molecule activators of tumor suppressor proteins.


Assuntos
Antineoplásicos/farmacologia , Ativadores de Enzimas/farmacologia , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Ativadores de Enzimas/química , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Ligação Proteica , Proteína Fosfatase 2/química , Transdução de Sinais , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA