Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 299(11): 105348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37838177

RESUMO

Tumors anomalously induce the expression of meiotic genes, which are otherwise restricted only to developing gametes. If and how these aberrantly expressed meiotic proteins influence DNA metabolism is not clear, but could have important implications for how tumors acquire and mitigate genomic instability. HORMAD1 is a highly conserved meiotic protein that is frequently expressed in lung adenocarincoma where its expression correlates with reduced patient survival and increased mutation burden. Here, we find that HORMAD1 associates with the replisome and is critical for protecting stalled DNA replication forks. Loss of HORMAD1 leads to nascent DNA strand degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. We find that these phenotypes are due to limited RAD51 loading onto stalled replication forks in the absence of HORMAD1. Ultimately, loss of HORMAD1 leads to increased DNA breaks and chromosomal defects, which is exacerbated dramatically by induction of replication stress. Tumor cells proliferate despite encountering chronic replication stress, placing them on the precipice of catastrophic genomic damage. Our data support the hypothesis that the aberrant expression of HORMAD1 is engaged to attenuate the accumulation of excessive DNA damage due to chronic replication stress, which may otherwise lead to accumulation of toxic levels of genomic instability.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Neoplasias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Neoplasias/genética
2.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778501

RESUMO

Tumors frequently activate the expression of genes that are only otherwise required for meiosis. HORMAD1, which is essential for meiotic recombination in multiple species, is expressed in over 50% of human lung adenocarcinoma cells (LUAD). We previously found that HORMAD1 promotes DNA double strand break (DSB) repair in LUAD. Here, we report that HORMAD1 takes on an additional role in protecting genomic integrity. Specifically, we find HORMAD1 is critical for protecting stalled DNA replication forks in LUAD. Loss of HORMAD1 leads to nascent DNA degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. Moreover, following exogenous induction of DNA replication stress, HORMAD1 deleted cells accumulate single stranded DNA (ssDNA). We find that these phenotypes are the result of a lack of RAD51 and BRCA2 loading onto stalled replication forks. Ultimately, loss of HORMAD1 leads to increased DSBs and chromosomal aberrations in response to replication stress. Collectively, our data support a model where HORMAD1 expression is selected to mitigate DNA replication stress, which would otherwise induce deleterious genomic instability.

3.
Elife ; 92020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990599

RESUMO

Cancer testis antigens (CTAs) are proteins whose expression is normally restricted to the testis but anomalously activated in human cancer. In sperm, a number of CTAs support energy generation, however, whether they contribute to tumor metabolism is not understood. We describe human COX6B2, a component of cytochrome c oxidase (complex IV). COX6B2 is expressed in human lung adenocarcinoma (LUAD) and expression correlates with reduced survival time. COX6B2, but not its somatic isoform COX6B1, enhances activity of complex IV, increasing oxidative phosphorylation (OXPHOS) and NAD+ generation. Consequently, COX6B2-expressing cancer cells display a proliferative advantage, particularly in low oxygen. Conversely, depletion of COX6B2 attenuates OXPHOS and collapses mitochondrial membrane potential leading to cell death or senescence. COX6B2 is both necessary and sufficient for growth of human tumor xenografts in mice. Our findings reveal a previously unappreciated, tumor-specific metabolic pathway hijacked from one of the most ATP-intensive processes in the animal kingdom: sperm motility.


Assuntos
Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Neoplasias Pulmonares/genética , Fosforilação Oxidativa , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Nus
4.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515734

RESUMO

Cancer/testis (CT) antigens are proteins whose expression is normally restricted to germ cells yet aberrantly activated in tumors, where their functions remain relatively cryptic. Here we report that ZNF165, a CT antigen frequently expressed in triple-negative breast cancer (TNBC), associates with SMAD3 to modulate transcription of transforming growth factor ß (TGFß)-dependent genes and thereby promote growth and survival of human TNBC cells. In addition, we identify the KRAB zinc finger protein, ZNF446, and its associated tripartite motif protein, TRIM27, as obligate components of the ZNF165-SMAD3 complex that also support tumor cell viability. Importantly, we find that TRIM27 alone is necessary for ZNF165 transcriptional activity and is required for TNBC tumor growth in vivo using an orthotopic xenograft model in immunocompromised mice. Our findings indicate that aberrant expression of a testis-specific transcription factor is sufficient to co-opt somatic transcriptional machinery to drive a pro-tumorigenic gene expression program in TNBC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína Smad3/metabolismo , Testículo/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Transdução de Sinais , Proteína Smad3/genética , Neoplasias de Mama Triplo Negativas/genética
5.
Mol Cell Biol ; 39(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036566

RESUMO

Ewing sarcoma is characterized by a pathognomonic chromosomal translocation that generates the EWSR1-FLI1 chimeric transcription factor. The transcriptional targets of EWSR1-FLI1 that are essential for tumorigenicity are incompletely defined. Here, we found that EWSR1-FLI1 modulates the expression of cancer/testis (CT) antigen genes, whose expression is biased to the testes but is also activated in cancer. Among these CT antigens, fetal and adult testis expressed 1 (FATE1) is most robustly induced. EWSR1-FLI1 associates with the GGAA repeats in the proximal promoter of FATE1, which exhibits accessible chromatin exclusively in mesenchymal progenitor cells (MPCs) and Ewing sarcoma cells. Expression of EWSR1-FLI1 in non-Ewing sarcoma cells and in MPCs enhances FATE1 mRNA and protein expression. Conversely, depletion of EWSR1-FLI1 in Ewing sarcoma cells leads to a loss of FATE1 expression. Importantly, we found that FATE1 is required for survival and anchorage-independent growth in Ewing sarcoma cells via attenuating the accumulation of BNIP3L, a BH3-only protein that is toxic when stabilized. This action appears to be mediated by the E3 ligase RNF183. We propose that engaging FATE1 function can permit the bypass of cell death mechanisms that would otherwise inhibit tumor progression.


Assuntos
Neoplasias Ósseas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fusão Oncogênica/genética , Sarcoma de Ewing/genética , Fatores de Transcrição/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Sarcoma de Ewing/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Trends Cancer ; 4(10): 701-712, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292353

RESUMO

Tumors of nearly every origin activate the expression of genes normally restricted to gametogenic cells. These genes encode proteins termed cancer/testis (CT) antigens, since expression outside of their naturally immune-privileged site can evoke an immune response. Despite extensive efforts to exploit CT antigens as immunotherapeutic targets, investigation of whether these proteins participate in tumorigenic processes has lagged. Here, we discuss emerging evidence that demonstrates that CT antigens can confer a selective advantage to tumor cells by promoting oncogenic processes or permitting evasion of tumor-suppressive mechanisms. These advances indicate the inherent flexibility of tumor cell regulatory networks to engage aberrantly expressed proteins to promote neoplastic behaviors, which could ultimately present novel therapeutic entry points.


Assuntos
Antígenos de Neoplasias/metabolismo , Carcinogênese/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/genética , Modelos Animais de Doenças , Drosophila melanogaster , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteólise
7.
Genome Announc ; 5(28)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28705962

RESUMO

Cluster BG of the actinobacteriophage was formed upon discovery of five novel bacteriophages isolated by enrichment from their host, Streptomyces griseus subsp. griseus strain ATCC 10137. Four members of this cluster (BabyGotBac, Maih, TP1605, and YDN12) share over 89% average nucleotide identity, while the other (Xkcd426) has only 72% similarity to other cluster members.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA