Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 104(17): 7367-7376, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32681242

RESUMO

A Gram-positive rubber-degrading bacterium, Actinoplanes sp. strain OR16 (strain NBRC 114529), is able to grow on agar plates containing natural and synthetic rubber as the sole sources of carbon and energy. When this strain was grown on natural rubber latex overlay agar plates, translucent halos around the cells were observed. To identify the natural rubber degradation genes and other features of its metabolism, its complete genome sequence was determined. The genome of OR16 consists of 9,293,892 bp and comprises one circular chromosome (GenBank accession number AP019371.1) with a G + C content of 70.3%. The genome contains 8238 protein-coding and 18 rRNA genes. A homology search of the genome sequence revealed that three genes (lcp1, lcp2, and lcp3) are homologous to an extracellular latex-clearing protein (Lcp) of Streptomyces sp. K30. RT-PCR analysis revealed that lcp1 and lcp2 seem to constitute an operon. Purified lcp gene products have oxygen consumption activity toward natural rubber latex, suggesting that all these genes encode rubber-degrading enzymes in OR16. Quantitative reverse transcription-PCR analysis indicated that the transcription of these genes is induced during the growth of OR16 on natural rubber. The genes located adjacent to lcp1 and lcp3, which code for a TetR/AcrR-type transcriptional regulator, can bind to the promoter regions of these lcp genes. It is suggested that the putative regulators play a role in regulating the transcription of the lcp genes. These results strongly suggested that three lcp genes are required for the utilization of natural rubber in strain OR16. Key Points • The complete genome sequence of Actinoplanes sp. strain OR16 was determined. • Three lcp genes which are involved in the natural rubber degradation in OR16 were identified. • Transcription of these lcp genes is induced during utilization of rubber in OR16. • Two regulators, which bind to the promoter regions of lcp, were determined.


Assuntos
Actinoplanes , Streptomyces , Proteínas de Bactérias/genética , Látex
2.
Microorganisms ; 12(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543664

RESUMO

3,4-Dichloroaniline (34DCA), a major metabolite of phenylurea herbicides, causes environmental contamination owing to its toxicity and recalcitrant properties. Acinetobacter soli strain GFJ2, isolated from soil potentially contaminated with herbicides, can degrade 34DCA. This study aimed to identify and characterize the 34DCA degradation gene cluster responsible for the conversion of 34DCA to 4,5-dichlorocatechol in the strain GFJ2. Genome analysis revealed one chromosome and seven plasmids in GFJ2, comprising 21, 75, and 3309 copies of rRNA, 75 tRNA, and protein-encoding genes, respectively. A gene cluster responsible for 34DCA degradation was identified, comprising dcdA, dcdB, and dcdC, which encode dioxygenase, flavin reductase, and aldehyde dehydrogenase, respectively. Transcriptional analysis indicated that this gene cluster is constructed as an operon, induced during 34DCA utilization. The heterologous expression of dcdA and dcdB in Escherichia coli confirmed their activity in degrading 34DCA to an intermediate metabolite, converted to 4,5-dichlorocatechol via a reaction involving the dcdC gene product, suggesting their involvement in 34DCA conversion to 4,5-dichlorocatechol. Deletion mutants of dcdA and dcdB lost 34DCA degradation ability, confirming their importance in 34DCA utilization in GFJ2. This study provides insights into the genetic mechanisms of 34DCA degradation by GFJ2, with potential applications in the bioremediation of environments contaminated by phenylurea herbicides.

3.
Front Microbiol ; 15: 1378082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873160

RESUMO

With more than 100 rubber-degrading strains being reported, only 9 Lcp proteins isolated from Nocardia, Gordonia, Streptomyces, Rhodococcus, Actinoplanes, and Solimonas have been purified and biochemically characterized. A new strain, Dactylosporangium sp. AC04546 (strain JCM34239), isolated from soil samples collected in Sarawak Forest, was able to grow and utilize natural or synthetic rubber as the sole carbon source. Complete genome of Strain AC04546 was obtained from the hybrid assembly of PacBio Sequel II and Illumina MiSeq. Strain AC04546 has a large circular genome of 13.08 Mb with a G+C content of 72.1%. The genome contains 11,865 protein-coding sequences with 3 latex clearing protein (lcp) genes located on its chromosome. The genetic organization of the lcp gene cluster is similar to two other reported rubber-degrading strains-Actinoplanes sp. OR16 and Streptomyces sp. CFMR 7. All 3 Lcp from strain AC04546 were expressed in Escherichia coli and exhibited degrading activity against natural rubber. The distinctiveness of strain AC04546, along with other characterized rubber-degrading strains, is reported here.

4.
J Biosci Bioeng ; 133(5): 452-458, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35216932

RESUMO

The microbial degradation of synthetic and natural poly(cis-1,4-isoprene) rubber is expected to become an alternative treatment technique for waste from poly(cis-1,4-isoprene) products, such as scrap tires. A gram-positive rubber-degrading bacterium, Rhodococcus sp. strain RDE2, was isolated from the waste of a rubber-processing factory in Vietnam. This strain grew on natural rubber as a sole source of carbon and energy and produced oligo-isoprenoid metabolites containing aldehyde groups from poly(cis-1,4-isoprene). To identify the genes responsible for poly(cis-1,4-isoprene) degradation, the complete genome sequence of this strain was determined. The complete genome sequence consists of a 5,715,406 bp chromosome and 6 plasmids (GenBank accession numbers AP025186.1 to AP025192.1) with an average GC content of 67.9%. The genome contains 5358 protein-coding sequences and 12 and 68 copies of rRNA and tRNA genes, respectively. Based on genome sequence analysis, the lcp gene (RDE2_08,770), responsible for the initial step of poly(cis-1,4-isoprene) degradation, was identified. The gene product obtained from Escherichia coli depolymerizes poly(cis-1,4-isoprene) to low-molecular-weight oligo-isoprenoids. The transcription of this gene is activated during the utilization of poly(cis-1,4-isoprene) in strain RDE2. The lcpR gene (RDE2_08,760), which encodes a putative transcriptional regulator, is located upstream of lcp. The lcpR gene product recognizes the promoter region of lcp. When the lcpR gene is deleted, the constitutive transcription of lcp is observed. Thus, it is inferred that the LcpR negatively regulates lcp transcription. These results strongly suggest that the lcp and lcpR genes are involved in poly(cis-1,4-isoprene) utilization in strain RDE2.


Assuntos
Rhodococcus , Borracha , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Escherichia coli/genética , Bactérias Gram-Positivas/metabolismo , Hemiterpenos/metabolismo , Látex/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Borracha/metabolismo
5.
Microorganisms ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36557577

RESUMO

Microbial degradation of natural rubber and synthetic poly(cis-1,4-isoprene) is expected to become an alternative treatment system for waste from poly(cis-1,4-isoprene) products including scrap tires. Nocardia farcinica NBRC 15,532, a gram-positive rubber-degrading bacterium, can utilize poly(cis-1,4-isoprene) as the sole source of carbon and energy to produce oligo-isoprene metabolites containing aldehyde and keto end groups. A homology-based search of the genome revealed a gene encoding a latex-clearing protein (Lcp). Gene disruption analysis indicated that this gene is essential for the utilization of poly(cis-1,4-isoprene) in this strain. Further analysis of the genome sequence identified aldehyde dehydrogenase (ALDH) genes as potential candidates for oxidative degradation of oligo-isoprene aldehydes. Based on the enzymatic activity of the ALDH candidates, NF2_RS14000 and NF2_RS14385 may be involved in the degradation of oligo-isoprene aldehydes. Analysis of the reaction products revealed that these ALDHs oxidized tri- to penta-isoprene aldehydes, which were generated by the reaction of Lcp. Based on the inability of ALDH gene deletion mutants, we concluded that NF2_RS14000 is mainly involved in the utilization of poly(cis-1,4-isoprene) and the oxidative degradation of oligo-isoprene aldehydes in Nocardia farcinica NBRC 15,532.

6.
Microorganisms ; 7(11)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652785

RESUMO

Gram-positive actinomycete Rhodococcus jostii RHA1 is able to grow on C10 to C19 n-alkanes as a sole source of carbon and energy. To clarify, the n-alkane utilization pathway-a cluster of 5 genes (alkBrubA1A2BalkU) which appeared to be involved in n-alkane degradation-was identified and the transcriptional regulation of these genes was characterized. Reverse transcription-PCR analyses revealed that these genes constituted an operon and were transcribed in the presence of n-alkane. Inactivation of alkB led to the absence of the ability to utilize n-undecane. The alkB mutation resulted in reduction of growth rates on C10 and C12 n-alkanes; however, growths on C13 to C19 n-alkanes were not affected by this mutation. These results suggested that alkB was essential for the utilization of C10 to C12 n-alkanes. Inactivation of alkU showed the constitutive expression of alkB. Purified AlkU is able to bind to the putative promoter region of alkB, suggesting that AlkU played a role in repression of the transcription of alk operon. The results of this study indicated that alkB was involved in the medium-chain n-alkanes degradation of strain RHA1 and the transcription of alk operon was negatively regulated by alkU-encoded regulator. This report is important to understand the n-alkane degradation pathway of R. jostii, including the transcriptional regulation of alk gene cluster.

7.
Biotechnol Rep (Amst) ; 22: e00332, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31011550

RESUMO

Gram-negative natural rubber-degrader, Rhizobacter gummiphilus NS21T, which was isolated from soil in the botanical garden in Japan, is a newly proposed species of genus of Rhizobacter. It has been reported that the latA1 gene is involved in the natural rubber degradation in this strain. To gain novel insights into natural rubber degradation pathway, the complete genome sequence of this strain was determined. The genome of strain NS21T consists of 6,398,096 bp of circular chromosome (GenBank accession number CP015118.1) with G + C content of 69.72%. The genome contains 5687 protein-coding and 68 RNA genes. Among the predicted genes, 4810 genes were categorized as functional COGs. Homology search revealed that existence of latA1 homologous gene (latA2) in this genome. Quantitative reverse-transcription-PCR and deletion analyses indicated that natural rubber degradation of this strain requires latA2 as well as latA1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA