Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 82(1): 105-118, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34919163

RESUMO

This is the first investigation of the bioavailability of PCBs associated with paint chips (PC) dispersed in sediment. Bioavailability of PCB-containing PC in sediment was measured using ex situ polyethylene passive samplers (PS) and compared to that of PCBs from field-collected sediments. PC were mixed in freshwater sediment from a relatively uncontaminated site with no known PCB contamination sources and from a contaminated site with non-paint PCB sources. PC < 0.045 mm generated concentrations in the PS over one order of magnitude higher than coarser chips. The bioavailable fraction was represented by the polymer-sediment accumulation factor (PSAF), defined as the ratio of the PCB concentrations in the PS and organic carbon normalized sediment. The PSAF was similar for both field sediments. The PSAFs for the field sediments were ~ 50-60 and ~ 5 times higher than for the relatively uncontaminated sediment amended with PC for the size fractions 0.25-0.3 mm and < 0.045 mm, respectively. These results indicate much lower bioavailability for PCBs associated with PC compared to PCBs associated with field-collected sediment. Such information is essential for risk assessment and remediation decision-making for sites where contamination from non-paint PCBs sources is co-located with PCB PC.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Arocloros , Disponibilidade Biológica , Monitoramento Ambiental , Sedimentos Geológicos , Pintura , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise
2.
Arch Environ Contam Toxicol ; 82(1): 95-104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34669000

RESUMO

Ongoing inputs, in the form of sediment deposition along with associated dissolved contaminants, have challenged the assessment of cap performance at contaminated sediment sites. To address this issue, thin 2-3 cm layer sand caps amended with activated carbon (AC) were investigated for the remediation of polychlorinated biphenyl (PCB) contaminated marine sediments using 90-day mesocosms. All treatments were challenged with (1) ongoing clean or marker-PCB-spiked sediment inputs and (2) bioturbation. Bioaccumulation in hard clams (filter feeding near the cap-water interface) was evaluated to best understand cap effectiveness, relative to sheepshead minnows (confined to the surface water) and sandworms (which burrowed through the caps). All caps (sand and AC amended sand) provided isolation of native bedded PCBs (i.e., PCBs sourced from the bed), reducing uptake in organisms. Total PCB bioaccumulation in clams indicated that AC addition to the cap provided no benefit with spiked influx, or some benefit (56% reduction) with clean influx. Spiked input PCBs, when added to the depositional input sediment, were consistently detected in clams and passive samplers, with and without AC in the cap. PCB uptake by passive samplers located in the caps did not reflect the performance of the remedy, as defined by clam bioaccumulation. However, PCB uptake by passive samplers in the overlying water reasonably represented clam bioaccumulation results.


Assuntos
Mercenaria , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Carvão Vegetal , Sedimentos Geológicos , Bifenilos Policlorados/análise , Areia , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 51(17): 9996-10004, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28766940

RESUMO

The Gold Standard for determining freely dissolved concentrations (Cfree) of hydrophobic organic compounds in sediment interstitial water would be in situ deployment combined with equilibrium sampling, which is generally difficult to achieve. In the present study, ex situ equilibrium sampling with multiple thicknesses of silicone and in situ pre-equilibrium sampling with low density polyethylene (LDPE) loaded with performance reference compounds were applied independently to measure polychlorinated biphenyls (PCBs) in mesocosms with (1) New Bedford Harbor sediment (MA, U.S.A.), (2) sediment and biota, and (3) activated carbon amended sediment and biota. The aim was to cross validate the two different sampling approaches. Around 100 PCB congeners were quantified in the two sampling polymers, and the results confirmed the good precision of both methods and were in overall good agreement with recently published LDPE to silicone partition ratios. Further, the methods yielded Cfree in good agreement for all three experiments. The average ratio between Cfree determined by the two methods was factor 1.4 ± 0.3 (range: 0.6-2.0), and the results thus cross-validated the two sampling approaches. For future investigations, specific aims and requirements in terms of application, data treatment, and data quality requirements should dictate the selection of the most appropriate partitioning-based sampling approach.


Assuntos
Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Animais , Biota , Monitoramento Ambiental , Sedimentos Geológicos , Massachusetts
4.
Environ Sci Process Impacts ; 26(5): 814-823, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345076

RESUMO

Marine mesoscale studies with sandworms (Alitta virens) were conducted to isolate important processes governing the exposure and bioaccumulation of polychlorinated biphenyls (PCBs) at contaminated sediment sites. Ex situ equilibrium sampling with silicone-coated jars, and in situ passive sampling with low-density polyethylene (LDPE) were used to determine the performance of an activated carbon (AC) amendment remedy applied to the bed sediment. A quantitative thermodynamic exposure assessment ('QTEA') was performed, showing that PCB concentrations in polymers at equilibrium with the surficial sediment were suited to measure and assess the remedy effectiveness with regard to PCB bioaccumulation in worms. In practice, monitoring the performance of sediment remedies should utilize a consistent and predictive form of polymeric sampling of the sediment. The present study found that ex situ equilibrium sampling of the surficial sediment was the most useful for understanding changes in bioaccumulation potential as a result of the applied remedy, during bioturbation and ongoing sediment and contaminant influx processes. The ultrathin silicone coatings of the ex situ sampling provided fast equilibration of PCBs between the sediment interstitial water and the polymer, and the multiple coating thicknesses were applied to confirm equilibrium and the absence of surface sorption artifacts. Overall, ex situ equilibrium sampling of surficial sediment could fit into existing frameworks as a robust and cost-effective tool for contaminated sediment site assessment.


Assuntos
Carvão Vegetal , Sedimentos Geológicos , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Sedimentos Geológicos/química , Animais , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Termodinâmica , Monitoramento Ambiental/métodos , Oligoquetos/metabolismo , Recuperação e Remediação Ambiental/métodos
5.
Environ Sci Technol ; 46(9): 5032-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22480244

RESUMO

Typical sand caps used for sediment remediation have little sorption capacity to retard the migration of hydrophobic contaminants such as PAHs that can be mobilized by significant groundwater flow. Laboratory column experiments were performed using contaminated sediments and capping materials from a creosote contaminated USEPA Superfund site. Azoic laboratory column experiments demonstrated rapid breakthrough of lower molecular weight PAHs when groundwater seepage was simulated through a column packed with coarse sand capping material. After eight pore volumes of flow, most PAHs measured showed at least 50% of initial source pore water concentrations at the surface of 65 cm capping material. PAH concentration in the cap solids was low and comparable to background levels typically seen in urban depositional sediment, but the pore water concentrations were high. Column experiments with a peat amendment delayed PAH breakthrough. The most dramatic result was observed for caps amended with activated carbon at a dose of 2% by dry weight. PAH concentrations in the pore water of the activated carbon amended caps were 3-4 orders of magnitude lower (0.04 ± 0.02 µg/L for pyrene) than concentrations in the pore water of the source sediments (26.2 ± 5.6 µg/L for pyrene) even after several hundred pore volumes of flow. Enhancing the sorption capacity of caps with activated carbon amendment even at a lower dose of 0.2% demonstrated a significant impact on contaminant retardation suggesting consideration of active capping for field sites prone to groundwater upwelling or where thin caps are desired to minimize change in bathymetry and impacts to aquatic habitats.


Assuntos
Sedimentos Geológicos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Poluição Química da Água/prevenção & controle , Carvão Vegetal/química , Modelos Químicos , Solo/química
6.
Environ Toxicol Chem ; 38(10): 2326-2336, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233239

RESUMO

Activated carbon-amended bed sediments reduced total polychlorinated biphenyl (PCB) accumulation in 3 functionally different marine species, sandworms (Alitta virens), hard clams (Mercenaria mercenaria), and sheepshead minnows (Cyprinodon variegatus), during both clean and contaminated ongoing sediment inputs. Mesocosm experiments were conducted for 90 d to evaluate native, field-aged bed sediment PCBs, and ongoing input PCBs added 3 times a week. Simulated in situ remediation applied an activated carbon dose equal to the native organic carbon content that was premixed into the bed sediment for 1 mo. The highest bioaccumulation of native PCBs was in worms that remained in and directly ingested the sediment, whereas the highest bioaccumulation of the input PCBs was in fish that were exposed to the water column. When periodic PCB-contaminated sediment inputs were introduced to the water column, the activated carbon remedy had minimal effect on the input PCBs, whereas the native bed PCBs still dominated bioaccumulation in the control (no activated carbon). Therefore, remediation of only the local bedded sediment in environmental systems with ongoing contaminant inputs may have lower efficacy for fish and other pelagic and epibenthic organisms. While ongoing inputs continue to obscure remedial outcomes at contaminated sediment sites, the present study showed clear effectiveness of activated carbon amendment remediation on native PCBs despite these inputs but no remediation effectiveness for the input-associated PCBs (at least within the present study duration). Environ Toxicol Chem 2019;38:2326-2336. Published 2019 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Carvão Vegetal/química , Monitoramento Ambiental , Sedimentos Geológicos/química , Bifenilos Policlorados/análise , Animais , Bioacumulação , Biodegradação Ambiental , Biodiversidade , Bivalves/metabolismo , Peixes/metabolismo , Lipídeos/análise , Poliquetos/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA